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Abstract
Recently, deep neural networks (DNNs) have been drawing the
attention of speech researchers because of their capability for
handling nonlinearity in speech feature vectors. On the other
hand, speech recognition based on structured classification is
also considered important since it realizes the direct classifica-
tion of automatic speech recognition. For example, a structured
classification method based on weighted finite-state transduc-
ers (WFSTs) introduces a linear classification term for each arc
transition cost in a decoding network to capture contextual in-
formation from decoder states. In this paper, we focus on the
integration of a WFST-based structured classifier and DNNs.
Since these two approaches attempt to improve the represen-
tation of features and labels, respectively, the combination of
these models would be efficient because of their complemen-
tarity. In the proposed method, DNNs are used to extract dis-
criminative features, and then the features are classified by us-
ing WFST-based structured classifiers. The proposed method
is evaluated by using TIMIT continuous phoneme recognition
tasks. We confirmed that combining structured classification
leads to stable performance improvements even from the well-
optimized deep neural network acoustic models.
Index Terms: Speech recognition, deep neural networks, struc-
tured classification, weighted finite-state transducers

1. Introduction
Deep neural networks (DNNs) and their noteworthy perfor-
mance in several speech recognition experiments have been at-
tracting attention. These methods involve the classification of
acoustic features into pre-defined HMM-states by using neu-
ral networks with many layers [1, 2]. The motivation behind
this deep hierarchical processing is that the nonlinear warping
required for classifying speech features is assumed to have a
hierarchical structure. [3] mentions that the number of hidden
units that are needed to correctly model a hierarchical process
by using single hidden layer neural networks is increasing expo-
nentially. Since such single layer networks with extremely large
hidden units tend to be overfitted, the use of deep and relatively
narrow hierarchical networks is assumed to be important. In
that sense, we can say that one of the advantages of deep neural
networks is its capacity to transform feature vectors into linearly
separable vectors. Furthermore, recently it has been suggested
that the hidden activation of DNNs is successfully suppressing
the speaker variability [4].

On the other hand, flat and direct approaches that can di-
rectly optimize decoder behavior by integrating several lexical
and acoustical features have also been considered important.
For example, [5] provides a flexible framework that can inte-
grate several detectors to realize accurate recognition. [6] in-
troduced a joint representation of language models and acous-
tic models by using conditional random fields. These method
maintain theoretical validity by avoiding the nonlinear warping
of the features, and only treating linear classification. Although

assuming linear classification is not realistic, such linear clas-
sifiers, in practice, achieve higher performances by expanding
representation of target classes. For example, in [7], the struc-
tured classifier is designed to classify each arc in a decoding
network represented as weighted finite-state transducers (WF-
STs). In that case, since the arcs of the WFSTs represent hid-
den states of hidden Markov models (HMMs), phonemes, posi-
tions in words, and words, the number of target classes is expo-
nentially increasing. The expansion of target classes is impor-
tant since the classification boundaries of linear classifiers can
be written as piece-wise linear functions where the number of
pieces is proportional to the number of target classes. There-
fore, one of the main advantages of the structural classification
approach is the expanded representation of target classes.

In this paper, we attempt to expand the target classes of
DNN acoustic models by exploiting the structure of WFST de-
coders as in [7]. The expansion of target classes is also con-
sidered important in DNN-based speech recognition systems.
For example, [8] used the HMM states of clustered triphones as
the output target classes of DNNs. In this work, we show that
an accurate modeling of context dependency is achieved by us-
ing the WFST-based structure instead of triphone target classes.
The proposed method can be assumed to be a conditional neural
field as proposed in [9, 10] where the target label spaces are fur-
ther expanded by using WFST-based representations. To speed-
up the training, we employed DNNs with bottleneck shapes,
and the hidden activation of the bottleneck layer is used as fea-
ture vectors of a WFST structured classification system. Since
it has been reported that the pretraining techniques developed
for DNNs are also valid for extracting efficient bottleneck fea-
tures [11], we can realize an effective combination of these two
methods by employing these techniques.

2. WFST-based structured deep neural
networks

In this section, we derive an integrated model, called WFST-
DNN, by generalizing the WFST decoding processes of DNN-
based speech recognition systems.

In WFST decoders, the most plausible word sequence ℓ̂,
given the observation vector sequence X = {x1,x2, · · ·xT },
is obtained by enumerating the output symbols O[â] corre-
sponding to the most plausible WFST arc sequence â, as fol-
lows:

ℓ̂ =O[â] where â = argmax
a∈D

P (a|X).

Here, D denotes a decoding network that is treated as a set of
possible arc sequences.

Typically each arc ai in an arc sequence a =
{a1, a2, · · · , ai, · · · } has annotations of the input HMM-state
symbol I[ai], output word symbol O[ai], time-stamp T [ai], and
arc transition cost W [ai]. Here, language, pronunciation, and
HMM transition model probabilities are embedded in the arc



transition costs W [ai]. By using this notation, the arc posterior
probability P (a|X) can be written by using the sum of the arc-
wise cost function ωAM(ai;X), which is defined as the sum of
acoustic cost g(ai;X) and arc transition cost W [ai], as follows:

P (a|X) ∝ exp

{∑
i

−ω(ai;X)

}
,

ωAM(ai;X) =g(ai) +W [ai],

(1)

where the acoustic cost function g(ai;X) is defined as follows:

g(ai;X) =

{
− logP (xT [ai]|s = I[ai]) I[ai] ̸= ϵ,
0 otherwise.

By introducing DNN-based acoustic modeling,
logP (xT [ai]|s = I[ai]) in the above equation can be
expressed as follows:

logP (xT [ai]|s = I[ai])

= logP (s = I[ai]|xT [ai])− logP (s = I[ai]) + C

=
∑
d

wI[ai],dhd(xT [ai]) + b′I[ai] − logP (s = I[ai]) + C,

where C is a constant, wI[ai],d is a connection weight between
the output unit corresponding to the class I[ai] and the d-th
hidden unit in the last hidden layer, b′I[ai]

is a bias term of the
output unit, and hd(xT [ai]) is the output value of d-th hidden
unit in the last hidden layer. By substituting this expression and
bI[ai]

def
= b′I[ai]

−logP (s = I[ai] into Eq. (1), the arc transition
cost function can be denoted as follows:

ωDNN(ai;X) = λ(ai)
Tϕ(xT [ai]), (2)

where feature vectors ϕ(xT [ai]) and model parameters λI[au]

are defined as follows:

ϕ(xT [ai]) =


[
1, 1, h1(xT [ai]), h2(xT [ai]), · · ·

]T
I[ai] ̸= ϵ,

[1, 0, 0, 0, · · · ]T
otherwise.

λ(ai) =


[
W [ai], b

′
I[ai]

, wI[ai],1, wI[ai],2, · · ·
]T

I[ai] ̸= ϵ,

[W [ai], 0, 0, 0, · · · ]T
otherwise.

(3)

From this equation, it is shown that the DNN-based speech
recognition is performing structured linear classification where
the feature function is defined by using the hidden activation
of the DNNs, and the parameters are tied corresponding to the
input symbol of the arc.

By introducing the idea of WFST-based structured classi-
fiers, the parameters in the above equation no longer need to be
tied by the HMM states. Instead of using the HMM state, the
WFST-DNN classifier introduces arc identifier variable N [ai],
and uses it to define the parameter vector as follows:

λ(ai) = θN [ai]. (4)

By directly optimizing θN [ai] under specific criteria, we can ob-
tain an effective structured linear classifier on the feature vector
ϕ computed by DNNs.

Figure 1 is a schematic overview of a WFST-DNN model.
We can consider WFST-DNN models as neural networks that
inherit the deep structure of DNNs and a large output layer cor-
responding to each arc of the WFSTs.
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Figure 1: Schematic overview of WFST-DNN model.

3. Two-stage training approach
In this work, we employed a two-stage training approach that
calculates lattices by using normal DNNs in the first stage.
Then, in the second stage, DNNs used to calculate the lattices
are expanded into the equivalent WFST-DNN classifiers, and
the WFST-DNNs are optimized further.

3.1. Training of DNNs

Firstly, the proposed method performs the conventional proce-
dures to construct DNN-based acoustic models. Here, to pre-
vent overfitting and computational inefficiency in the subse-
quent processing of the WFST-DNN classifiers, the DNNs are
designed to have a bottleneck layer that consists of a rather
smaller number of hidden units. For example, in the follow-
ing experiments, we used 2048 hidden units for each layer, 512
hidden units for the bottleneck layer, which is located between
the output layer and the hidden layers, and 144 (or 834) output
units. Each layer, including the bottleneck layer, is pretrained as
a restricted Boltzmann machine, and then concatenated DNNs
are trained by using the back propagation algorithm. The de-
coder lattices are then generated by using the trained DNNs.

3.2. Retraining as WFST-DNNs

In the second stage, the parameters of the DNNs used to cal-
culate the lattices are untied and converted into the equivalent
parameters of WFST-DNNs by using Eqs. (3) and (4). By us-
ing the tied version of the parameters as an initial value of the
WFST-DNN systems, we can consistently use pre-computed
lattices without crucial gaps in the competing sequences.

Hereafter, we denote a set of parameters that is considered
to be in the second stage as Θ def

= {θj |∀j} where j is an index
variable that denote one of arc identifiers. Further, we assume
that each observation sequence X(n) in the given training data
set {X(n)|∀n} has a corresponding correct reference arc se-
quence a(n). To retrain the parameters Θ, we adopted the min-
imum transition error training methods used for WFST-based
structured classifiers [12]. In this paper, as in [12], we consider
the two objective functions for MTE training. The first objec-
tive function is a boosted MMI function [13] combined with a
minimum transition error (MTE) measure, as follows:

F bMMI
σ (Θ) =

∑
n

log
exp

{
−Ω

(
X(n),a(n); Θ

)}
∑

a′ exp
{
−Ω

(
X(n),a′; Θ

)
+ σE(a(n),a′)

} , (5)

where E(a(n),a′) is the transition error count function that
counts the number of frames processed by an incorrect arc.



Ω(X,a; Θ) is the total cost function defined as follows:

Ω(X,a; Θ)
def
=

∑
i

ω(X, ai). (6)

The bMMI training acts so that the appearance of erroneous arc
sequences a′, which yield high E(a(n),a′), is strongly sup-
pressed. In the above formulation, we assumed that the refer-
ence arc alignment was fixed to ensure convexity in the second
stage of the training; however, we can also use lattice-based
marginalization in the numerator part of the objective function.

To minimize the error measure E directly, the differenced
MMI (dMMI) method [14] exploits the following identity:⟨

−E(a(n),a′)
⟩
P (a′|X,Θ)

=
∂

∂σ
F bMMI
σ (Θ) |σ=0 .1 (7)

By computing the above partial derivative numerically, the fol-
lowing dMMI method is obtained.

F dMMI
σ1,σ2

(Θ) =
F bMMI
σ2

(Θ)− F bMMI
σ1

(Θ)

σ2 − σ1
. (8)

The dMMI objective function is closely related to the
sequence-level minimum Bayes risk training of neural networks
[15]. If we use a σ1 → +0, σ2 → −0 setting the dMMI train-
ing converges to the minimum Bayes risk training; however,
the target output class of the proposed method is expanded to
WFST arcs. Furthermore, if we set σ1 = σ and σ2 → −∞, the
bMMI objective function is recovered from the dMMI objective
function. Although dMMI can directly minimize the number of
transition errors, the objective function is not generally convex.

4. Experiments
To validate the efficiency of the proposed method, we con-
ducted continuous phoneme recognition experiments based on
the TIMIT dataset. We used 11-frames of Mel-frequency cep-
stral coefficients (MFCC)-based 39 dimensional features com-
puted for each 10 ms as DNN input vectors. As we mentioned
above, we used 2048 hidden units for each hidden layer, and 512
hidden units for the bottleneck layer. The activation functions
of the hidden and bottleneck layers were fixed to the sigmoid
function. The optimization of the DNNs (the first stage) was
performed in a similar way to that described in [1]. The slight
difference with [1] was that we used 144 HMM states corre-
sponding to 48 reduced phoneme sets as an output class, we
reduced the learning rate when the frame error rate of the devel-
opment dataset was increased, and we did not revert to the previ-
ous parameters when the validation error increased. Regardless
of these small changes, we confirmed that the DNNs’ efficiency
was also valid under our experimental conditions. The phoneme
error rates of our baseline DNN systems are listed in Table 1.

To obtain the arc-identifiers N [ai], we numbered all the
arcs in the decoding WFST. In the experiments, the decod-
ing WFST D was constructed as Opt(H ◦ G) where H was
the HMM state sequence network, G was the phoneme bigram
model estimated by using maximum-likelihood training, ◦ de-
noted the composition operation, and Opt denoted an optimiza-
tion operator of WFSTs. We should note that we did not include
the factorization operation in Opt to ensure the equivalent con-
version between the conventional arc score (Eq. (1)) and the
arc-based score (Eq. (2)). There were 1771 arcs (arc identi-
fiers) in the network D.

The second stage of the WFST-DNN optimization was per-
formed in a batch manner by using the Rprop method [16]. The
initial step size of the Rprop was set at a small value (10−4)

1This equation is corrected from the submitted version

Table 1: Performance of DNNs without a bottleneck (L denotes
the number of hidden layers used, and the phoneme error rates
(PERs) are displayed as a percentage

L 1 2 3 4 5 6
PER (test) 24.5 23.7 22.9 23.1 22.7 22.9
PER (dev.) 23.4 22.5 21.7 21.8 21.6 21.7

Table 2: Phoneme error rates (PERs) of the WFST-DNN sys-
tems (core test set).

method σ PER [%] PER [%]
L = 2 L = 5

ML-HMM – 32.1
WFST-CRF [12] (2.0,−2.0) 28.8

DNN – 23.7 22.7
BN-DNN – 23.7 23.1

WFST-DNN bMMI 0.0 23.7 22.5
WFST-DNN bMMI 1.0 23.2 22.2
WFST-DNN bMMI 2.0 22.7 22.5
WFST-DNN bMMI 4.0 22.8 22.6
WFST-DNN dMMI (2−8,−2−8) 22.9 21.9
WFST-DNN dMMI (1.0,−1.0) 22.6 21.9
WFST-DNN dMMI (2.0,−2.0) 22.9 22.6
WFST-DNN dMMI (4.0,−4.0) 23.9 23.3

to respect the solution of the first stage, and the validity of lat-
tices generated by using baseline DNNs. The lattice smoothing
factor for optimization was chosen by using the development
dataset. In the following experiments, we selected two numbers
of the hidden layers, L = 2 and L = 5, since L = 2 was con-
sidered sufficiently small while preserving deepness, and L = 5
performed best in the baseline DNN experiments.

The phoneme error rates of the conventional maximum like-
lihood HMMs (ML-HMM), conventional WFST-based classi-
fier without DNNs (WFST-CRF), DNN-based acoustic models
(DNN), DNNs with an additional bottleneck (BN) layer (BN-
DNN), and WFST-DNN systems (WFST-DNN) are listed in Ta-
bles 2 and 3. We confirmed that the proposed WFST-based clas-
sification can reduce the phoneme errors even from the strong
baseline constructed with the DNNs. Even though the relative
error reduction rates were around 4%, the improvement from
the strong DNN baselines was considered to be important.

In relatively shallow networks (L = 2), the introduction of
a bottleneck layer did not degrade the performance. This might
be attributed to the fact that the number of layers was increas-
ing even though the number of hidden units in the bottleneck
layer was small. However, with the deep network, we observed
that introducing a small bottleneck layer degraded the perfor-
mance. This suggests that introducing a bottleneck eliminated
information of features during the RBM-based pretraining step;
therefore, the following fine tuning converged to a slightly poor
local optimum. Even in that case, by introducing WFST-DNN
architectures, the total performance was superior to the conven-
tional DNN acoustic models.

We confirmed that the importance of using appropriate
hyper-parameters σ, σ1, and σ2. By setting these parameters
at radical values, the obtained WFST-DNNs became inferior to
the original DNN acoustic models. However, we also confirmed
that these values can be effectively tuned by using the develop-
ment dataset. We observed that the best setting in terms of the
error rates of the development set also achieved the better per-
formance in the core test set.



Table 3: Phoneme error rates (PERs) of the WFST-DNN sys-
tems (development set).

method σ PER [%] PER [%]
L = 2 L = 5

ML-HMM – 30.8
WFST-CRF [12] (2.0,−2.0) 28.1

DNN – 22.5 21.6
BN-DNN – 22.2 21.8

WFST-DNN bMMI 0.0 21.5 21.3
WFST-DNN bMMI 1.0 21.2 21.0
WFST-DNN bMMI 2.0 21.0 20.8
WFST-DNN bMMI 4.0 21.2 21.0
WFST-DNN dMMI (2−8,−2−8) 21.0 20.7
WFST-DNN dMMI (1.0,−1.0) 20.9 20.8
WFST-DNN dMMI (2.0,−2.0) 21.1 21.0
WFST-DNN dMMI (4.0,−4.0) 22.1 21.7

Table 4: Phoneme error rates (PERs) of deep neural networks
(DNNs), context dependent deep neural networks (CD-DNNs),
and the proposed methods (WFST-DNN).

DNN WFST-DNN CD-DNN WFST-DNN
mono mono tri. tri.

PER 22.7 21.9 21.9 21.1

Table 4 shows the performance of the WFST-DNN models
used with triphone WFSTs. In this comparison, we constructed
a decoding network as Opt(H◦C ◦G) where C was a context-
dependency WFST. There were 3436 arcs in the triphone de-
coding network. The hyper-parameter we used for the WFST-
DNNs was taken from the best setting of the previous experi-
ments. Specifically, we used dMMI training with L = 5, σ1 =
1, σ2 = −1 for the WFST-DNNs. Here, we observed that the
WFST-based expansion of DNNs worked efficiently. Further,
we observed that monophone WFST-DNNs were comparable
to triphone the CD-DNNs even though the contextual informa-
tion leveraged in monophone WFST-DNN models is basically
biphone information introduced by the WFST arcs correspond-
ing to the phoneme bigram models. This suggests that the use of
expanded label representation is more effective than the use of
the conventional context clustering method based on the maxi-
mum likelihood principle.

5. Conclusions
This paper proposed a method for integrating deep neural net-
works (DNNs) with a structured classification method based on
weighted finite-state transducers (WFSTs). To take computa-
tional advantage of both methods, we employed a two-stage
training approach in which baseline DNNs are estimated in
the first stage and the last layer of the expanded DNNs, called
WFST-DNNs, and WFST weights are jointly estimated in the
second stage. To train the WFST-DNNs, we employed mini-
mum transition error (MTE) training methods. By evaluating
the WFST-DNNs by using continuous phoneme recognition ex-
periments, we confirmed that MTE training methods were effi-
cient for WFST-DNN training.

Future work will includes the joint optimization of overall
systems. Even though the use of a two-stage approach is im-
portant for computational efficiency, joint optimization would
also be important because it can optimize the bottleneck out-
puts. This direction can be achieved by scaling up the method

proposed in [15]; however, scaling up the method is a chal-
lenge because the number of target class increases exponentially
in large-vocabulary cases. Furthermore, the use of improved
input representations is also considered to be important. Re-
cently, it was shown that the use of filterbank outputs is more
efficient than the use of MFCC features [4]. Evaluations of
large-vocabulary continuous speech recognition tasks are also
considered to be important. Since the second stage of training
can be efficiently parallelized, these evaluations can be achieved
straightforwardly with the proposed method.
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