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Abstract
We present a realization method of the principle of mini-

mum relative entropy discrimination (MRED) in order to de-
rive a regularized discriminative training method. MRED is ad-
vantageous since it provides a Bayesian interpretations of the
conventional discriminative training methods and regularization
techniques. In order to realize MRED for speech recognition,
we proposed an approximation method of MRED that strictly
preserves the constraints used in MRED. Further, in order to
practically perform MRED, an optimization method based on
convex optimization and its solver based on the cutting plane
algorithm are also proposed. The proposed methods were eval-
uated on continuous phoneme recognition tasks. We confirmed
that the MRED-based training system outperformed conven-
tional discriminative training methods in the experiments.
Index Terms: speech recognition, discriminative training, op-
timization

1. Introduction
Recently, several discriminative training approaches have been
studied in order to directly minimize the error rate of automatic
speech recognition systems. In these methods, the parameters
of probabilistic models are estimated by optimizing a discrim-
inant criterion function. Several methods for discriminative
training have already been proposed along with choices of the
criteria [1–3]. Although discriminative training methods signif-
icantly outperform conventional maximum likelihood training
methods, the training process still includes the risk of overfit-
ting when the amount of available training data is insufficient.

In order to avoid overfitting problems, regularization tech-
niques, which introduce additional terms to penalize overfitting,
have been investigated. The support vector machine (SVM)
is one of the most successful discriminative models that uti-
lizes a regularization technique [4]. In SVM, large-margin lin-
ear classifiers are achieved by introducing regularization terms
that minimize the L2-norm of the weight vectors used in linear
classifiers. Regularization techniques have also been applied to
discriminative training methods for probabilistic models. The
I-smoothing technique can be considered as a regularization
technique that controls the estimated model parameters such
that a higher likelihood as well as discriminative performance
is ensured [3]. Further, as in the case of SVMs, large-margin
techniques are also widely investigated in several articles [5, 6].
In the both cases, it is confirmed that the regularization tech-
niques are efficient in order to prevent overfitting in discrimina-
tive training.

In the context of Bayesian inference, regularization is uti-
lized by introducing a prior probability density function (pdf)
of the model parameters. As compared with the Bayesian
approach, conventional regularization techniques used in dis-
criminative training lack extensibility. For example, in the
Bayesian approach, various problems connected to automatic
speech recognition, such as model selection problems, context
clustering problems and domain adaptation problems, are for-
mulated with unified probabilistic interpretation.

Recently, the principle of minimum relative entropy dis-
crimination (MRED) was proposed by Jaakkola et al. [7] in or-
der to provide Bayesian interpretations of discriminative model
training methods. In this paper, as a core part of a full MRED
speech recognition framework, we derive an improved realiza-
tion method of the MRED principle for continuous-density hid-
den Markov models (CD-HMMs). Conventionally, this princi-
ple is applied to feature selection [8], training of Gaussian mix-
ture models (GMMs) [9], and recognition of isolated phoneme
based on kernel methods [10]. However, previous MRED meth-
ods suffer from problems when a variety of latent variables are
used in the models; therefore, their application to training of
CD-HMMs used for continuous speech recognition is difficult.
By applying the proposed MRED method, we derived an MCE-
based discriminative training method that can explicitly embed
the concept of classification margin and have extensibility due
to probabilistic representations of model parameters.

2. Minimum relative entropy
discrimination (MRED)

In MRED, by considering all variables as random variables, the
posterior pdf P (Θ, ξ) of model parameters Θ and classification
margin variables ξ is estimated by minimizing the Kullback-
Leibler divergence (KL divergence) between the posterior pdf
and the prior pdf P 0(Θ, ξ) so that the expectation of the classi-
fication performance function D is greater than that of the clas-
sification margin variables ξi, formulated as follows:

min
P (Θ,ξ)

KL[P (Θ, ξ)||P 0(Θ, ξ)],

s. t.
D

D(Xi; Θ) − ξi
E

P (Θ,ξ)
≥ 0, ∀i.

(1)

Here, Xi is ith feature sequence in a training dataset;
〈f(x)〉P (x) denotes the expectation of f(x) with respect

to P (x), i.e. 〈f(x)〉P (x)

def
=

R

x
P (x)f(x)dx; and

KL[f(x)||g(x)] denotes the KL divergence of g(x) from f(x),

i.e. KL[f(x)||g(x)] def
= 〈log f(x) − log g(x)〉f(x). In this for-

mulation, inequality constraints are designed for each input se-
quence of the classifier. Therefore, margin variables are incor-
porated for each input sequence, i.e. ξ = {ξi|∀i}. Because the
constraint due to ith feature sequence is always satisfied by re-
ducing ξi, ξi is generally controlled by introducing a prior pdf
P 0(ξi) that favors a larger value of the margin variable ξi. This
formulation enables us to utilize the prior knowledge of param-
eters and classification margin via the prior pdf P 0(Θ, ξ).

As an example, we introduce a performance function that
indicates the discriminative performance of a given parameter
set Θ and feature sequence Xi, as follows:
D(Xi; Θ) = logP (Xi, li|Θ)

| {z }

Ri(Θ)

− log max l 6=liP (Xi, l|Θ)
| {z }

Ci(Θ)

,

(2)



where li is the label sequence corresponding to the ith feature
sequence in the training dataset, l is a variable that denotes a
label sequence, Ri(Θ) denotes a reference log-likelihood, and
Ci(Θ) denotes a competitor’s log-likelihood. In this paper, we
used this MCE-type performance function [2]; however, an al-
ternative choice is also applicable.

3. Application of MRED to CD-HMMs
In this section, we describe a method for performing the above-
mentioned optimization problem. Although MRED provides
the formulation based on convex optimization, this optimiza-
tion problem is not tractable due to the latent variable used in
CD-HMMs. In order to make the optimization solvable, we
first reformulate the original optimization problem to an aux-
iliary optimization problem with tighter constraints. Then, the
remaining intractable parts in the constraint functions are elimi-
nated by representing a single constraint by infinite constraints.
Finally, a practical solver for the auxiliary problem is presented.

3.1. Auxiliary problem with tighter constraints
Because the inequality constraints defined in the original op-
timization (Eq. (1)) are non-negative constraints, the use of
a lower bound function of the performance function D yields
tighter constraints. The tighter constraints are important to en-
sure that the solution of the auxiliary optimization also satisfies
the constraints of the original optimization.

In order to obtain a lower bound of D, we introduce a lower
bound of Ri(Θ) and an upper bound of Ci(Θ) in Eq. (2). A
lower bound of Ri(Θ) can be obtained by introducing a pdf
ψi(q) of the latent variable q used in CD-HMMs (i.e. q repre-
sents sequences of mixture components and HMM states) and
applying Jensen’s inequality, as follows:
Ri(Θ) = log

X

q

P (X, l, q|Θ)

≥
X

q

ψi(q) logP (X, l, q|Θ) +H[ψi]
def
= R̂i[Θ, ψi],

(3)

where H[ψ] is the entropy function, i.e. H[ψ]
def
=

−
P

q ψ(q) logψ(q). Further, an upper bound of Ci is ob-
tained as follows:
Ci(Θ) = log max

l 6=li
P (Xi, l|Θ) ≤ log

X

l6=li

P (Xi, l|Θ)

=max
ψ̃i

X

l6=li

X

q

ψ̃i(q) logP (X, l, q|Θ) +H[ψ̃i]

| {z }

Či[Θ,ψ̃i]

.

(4)
By substituting these functions (Eqs. (3) and (4)) into the

original optimization defined in Eq. (1), the original optimiza-
tion is reformulated to an optimization problem that has tighter
constraints, defined as follows:
min
P (Θ,ξ)

KL[P (Θ, ξ)||P 0(Θ, ξ)],

s. t.

fi

R̂i[Θ, ψi] − max
ψ̃i

Či[Θ, ψ̃i] − ξi
fl

P (Θ,ξ)

≥ 0, ∀i.

(5)
Here, maximization due to ψ̃i cannot be omitted since this
maximization is required to maintain the strictness of the con-
straints.

3.2. Reformulating to a semi-infinite convex programming
In order to derive a method for performing the auxiliary opti-
mization defined in Eq. (5), this problem is reformulated to a
semi-infinite programming in this section. We focused that the

maximization due to ψ̃i is equivalent to searching for the tight-
est constraint obtained by varying ψ̃i. By considering a search
method that is performed iteratively in a solver (cf. Section 3.4),
we introduce an infinite sequence of search hypotheses, which
includes a solution that corresponds to the tightest constraints,
as {ψ̃i1, ψ̃i2, · · · , ψ̃ik, · · · }, where k is an index of the elements
in this sequence which runs from 1 to infinity. Each hypothesis
ψ̃ik represents a posterior pdf of the latent variable q. Because
satisfying all constraints in this sequence leads to satisfaction of
the tightest constraint as in Eq. (5), an equivalent optimization
can be expressed as follows:

min
P (Θ,ξ)

KL[P (Θ, ξ)||P 0(Θ, ξ)],

s. t.
D

R̂i[Θ, ψi] − Či[Θ, ψ̃ik] − ξik

E

P (Θ,ξ)
≥ 0, ∀i, ∀k.

(6)
We note that this formulation avoids the intractable maximiza-
tion (maxψ̃i ) by introducing the infinite sequence of hypothe-
ses. By applying this technique, the intractable optimization is
reformulated as a tractable semi-infinite convex optimization.

As in the case of other convex optimization problems, a
function form of the solution of the auxiliary problem (Eq. (6))
can be restricted by considering the Karush-Kühn-Tucker con-
ditions, as follows:

P (Θ,ξ) =
P 0(Θ, ξ)

Z(α)
exp

8

<

:

X

i,k

αik

“

R̂i[Θ,ψi]−Či[Θ,ψ̃ik]−ξik
”

9

=

;

,

Z(α) =

*

exp

8

<

:

X

i,k

αik

“

R̂i[Θ,ψi]−Či[Θ,ψ̃ik]−ξik
”

9

=

;

+

P0(Θ,ξ).

(7)
Here, nonnegative variables αik ≥ 0, called Lagrange multipli-
ers, are introduced for each constraint in the auxiliary optimiza-
tion problem. Because the number of constraints is increased to
infinity, the numbers of Lagrange multipliers α def

= {αik|∀i, ∀k}
and the margin variables ξ def

= {ξik|∀i, ∀k} are also increased to
infinity. Further, the problem defined in Eq. (6) has an alterna-
tive form called the dual problem, and it is expressed as follows:

max
α

J(α) = − logZ(α), s. t. αik ≥ 0, ∀i, ∀k. (8)

The optimal posterior pdf can be obtained by substituting the
solution of this dual problem into Eq. (7).

Hereinafter, we introduce CD-HMM parameters as Θ
and assume the independency of the parameters, i.e.
Θ

def
= {µg,d, τg,d, ρs,m, |∀g, ∀d,∀s, ∀m} and P 0(Θ, ξ)

def
=

Q

g,d P
0(µg,d, τg,d)

Q

s P
0(ρs)

Q

i,k P
0(ξik)

1, where g, d, s,
and m denote the indices of all Gaussian pdfs used in CD-
HMMs, dimensions, HMM states, and mixture components, re-
spectively; µg,d and τg,d denote the mean and precision (inverse
of variance) of (g, d)th Gaussian, respectively. The optimiza-
tion function J(α) in the dual problem (Eq. (8)) can be decom-
posed into Gaussian pdf terms JGAUSS

g,d , mixture terms JMIX
s , and

margin terms JMARGIN
i,k , as follows:

J(α) =
X

g,d

JGAUSS
g,d (α) +

X

s

JMIX
s (α) +

X

i,k

JMARGIN
i,k (α). (9)

The following section derives a closed-form expression of each
term by introducing conjugate prior pdfs.

1Due to space constraints, we assumed diagonal covariances in each
Gaussian and omitted transition probability. However, the proposed
method is naturally extensible to the full-covariance case with transi-
tion probability estimation.



3.3. Conjugate prior pdfs

In order to practically realize MRED, the use of conjugate prior
pdfs is essential because it yields a closed-form objective func-
tion when combined with the abovementioned tighter optimiza-
tion problem.

Conjugate pdfs for parameters of Gaussian pdfs are repre-
sented by the Gaussian-gamma distribution, defined as follows:
P 0(µg,d, τg,d|µ0

g,d, γ
0
g , η

0
g , β

0
g,d) ∝

(τg,d)
η0g−1/2 exp



−β0
g,dτg,d −

τg,dγ
0
g

2
(µ0
g,d − µg,d)

2

ff

.

(10)
By using this conjugate prior pdf, the integral with respect to the
Gaussian pdf parameters in JGAUSS(α) (Eq. (9)) can be solved
as follows:

JGAUSS
g,d (α) =γg(α)log

√
2π+log

p

γg(α)

Γ(ηg(α))
+ηg(α) log βg,d(α),

(11)
where the following are the parameters of the posterior pdf, as
functions of α, derived as follows:

ηg(α) =η0
g +

∆0
g(α)

2
, γg(α) = γ0

g + ∆0
g(α),

µg,d(α) =
γ0
gµ

0
g,d + ∆1

g,d(α)

γg(α)
,

βg,d(α) =β0
g,d +

1

2

“

γ0
g

`

µ0
g,d

´2
+ ∆2

g,d(α) − γg(α)µg,d(α)2
”

,

(12)
where

∆0
g(α) =

X

i

X

k

αik

“

χ0
g[X

i, ψi] − χ0
g[X

i, ψ̃ik]
”

,

∆1
g,d(α) =

X

i

X

k

αik

“

χ1
g,d[X

i, ψi] − χ1
g,d[X

i, ψ̃ik]
”

,

∆2
g,d(α) =

X

i

X

k

αik

“

χ2
g,d[X

i, ψi] − χ2
g,d[X

i, ψ̃ik]
”

.

(13)
Here, χ0

g[X, ψ], χ1
g,d[X, ψ], and χ2

g,d[X, ψ] denote the occu-
pancy, 1st-order statistics, and 2nd-order statistics, respectively,
of the (g, d)th Gaussian pdf calculated by using the given fea-
ture sequence X and occupancy pdf ψ.

As in the case of the Gaussian parameters, the Dirichlet dis-
tribution, is introduced as the conjugate prior pdfs of the mix-
ture weight vectors P 0(ρs), defined as follows:

P 0(ρs|φ
0
s) ∝

Y

m

(ρs,m)(φ
0
s,m−1) . (14)

By introducing this prior pdf, the term in the objective function
(Eq. (8)) and the estimated parameters of a posterior pdf are
derived as follows:

JMIX
s (α) = − log Γ

 

X

m

φs,m(α)

!

+
X

m

log Γ (φs,m(α)) ,

φs,m(α) =φ0
s,m + ∆0

G(s,m)(α),
(15)

where G(s,m) is an index that indicates the Gaussian pdf cor-
responding to the sth HMM state and the mth mixture compo-
nent.

In order to control the margin variable, we introduce an ex-
ponential distribution that favors a positive value in the margin
variable ξik, defined as follows:

P 0(ξik|c0i,k, δ0i,k) ∝ exp
n

−c0i,k
“

δ0i,k − ξik

”o

, (ξik ≤ δ0i,k).

(16)
Here, c0i,k is a hyperparameter that adjusts the importance of
the corresponding constraint, and δii,k > 0 is a hyperparameter
that represents a desirable amount of margin. The closed-form

expression of the term JMARGIN
i,k (α) is derived as follows:

JMARGIN
i,k (α) = − αik

“

sik − δ0i,k

”

+ log
“

c0i,k − αik

”

, (17)

where sik indicates an amount of shift in the margin computed
by using a score obtained by language models and the entropies
of each latent variable pdf, denoted as follows:

sik =H[ψi] −H[ψ̃ik] + log
P (li)

P

l 6=li

P

q ψ̃
i
k(q)P (l|q)

. (18)

3.4. A solver based on cutting plane method
Since the auxiliary optimization problem has an infinite number
of variables to be optimized, as discussed in Section 3.2, the
conventional convex optimization method is not suitable. In this
section, in order to efficiently solve this problem, we propose an
optimization method based on the cutting plane method [11];
this method gradually adds the constraints to be considered as
the optimization iterates.

In the proposed algorithm, ψ̃iK , where K denote the itera-
tion count, is estimated and added as a hypothesis of the tightest
constraint at the Kth iteration. Then, αik (k ≤ K) is estimated
to satisfy all constraints due to ψ̃ik. A newly added hypothesis
ψ̃iK can be estimated by finding a pdf that minimizes the con-
straint function in Eq. (6), performed as follows:

ψ̃iK =argminψ̃

D

R̂i[Θ, ψi] − Či[Θ, ψ̃] − ξi
E

PK(Θ,ξ)
,

=argmaxψ̃

D

Či[Θ, ψ̃]
E

PK(Θ,ξ)
,

(19)
where PK(Θ, ξ) is the current estimation of P (Θ, ξ) obtained
by assuming αik = 0 (∀k ≥ K). Because Eq. (19) implies
maximum-likelihood estimation (MLE) of the latent pdf ψ̃iK ,
ψ̃iK can be obtained by computing an occupation pdf by apply-
ing the forward-backward algorithm (FB) to lattices that repre-
sent a set of erroneous label sequences (∀l 6= li).

We note that the estimation of latent pdfs ψi corresponding
to the ith reference label is also important in order to obtain an
accurate approximation of the constraint function. Therefore,
we incorporate the update step of ψi in the iterative procedure
in addition to the estimation of ψ̃iK . Finally, by alternately per-
forming update of ψi, adding of ψ̃ik, and optimization of αik,
we can perform the optimization of the auxiliary problem (Eq.
(6)). In particular, the following steps are iterated:

1. Update ψi by applying FB to the reference label,
2. Estimate ψ̃iK by applying FB to the competitor lattices,
3. Optimize αik by using ψi and ψ̃ik (∀k ≤ K),
4. Increment K.

This algorithm enables the use of the infinite constraints by only
considering finite variables to be optimized. Further, this algo-
rithm is reasonable since the tightest constraints in each itera-
tion dominates the other constraints in most cases.

Note that the conventional MRED method originally pro-
posed for GMM training [9], which updates ψ̃i, ψi and P (Θ, ξ)
alternately, can also be applied to CD-HMMs. This conven-
tional method can be regarded as a special case of the proposed
method by considering a single constraint for each training da-
tum that minimizes the constraint function. Thus, the conven-
tional method can be implemented by using ψ̃ik (k = K) in the
step 3 instead of ψ̃ik (∀k ≤ K).

4. Experiments
In the experiments, we used 3,696 sentences (173,492
phonemes) from the TIMIT database for model training, and
192 sentences (7,215 phonemes; a.k.a. TIMIT core testset)
for evaluation. All the training and test speech waveforms are



Table 1: Phoneme error rates of the compared methods
Method 1 mix. 2 mix. 4 mix. 8 mix.

MLE 41.8 38.1 35.4 33.0
(40.4) (36.5) (33.7) (31.2)

MMIE 38.9 35.6 33.6 32.0
(37.5) (34.1) (32.1) (30.2)

MMIE (I-smooth) 38.8 35.5 33.6 32.0
(37.5) (33.9) (32.0) (30.2)

MRED (single) [9] 39.6 36.5 34.3 32.6
(39.2) (34.8) (32.4) (30.5)

MRED (proposed) 37.7 34.7 32.5 31.5
(36.7) (33.5) (31.3) (29.9)

parametrized by Mel-frequency cepstral coefficients (12 dims
MFCC) and its log-energy augmented by their derivatives and
accelerations (39 dims) computed at a 10-ms frame shift with
a 25-ms window size. As described in [12], we used 48 pho-
netic classes for training and decoding, and the phoneme error
rates were calculated by using 39 broader phonetic categories.
All HMMs have left-to-right 3 states for each 48 monophone
model. A bi-gram (bi-phoneme) grammar model is applied dur-
ing all decoding processes.

For comparison, the MLE-based system and a discrimina-
tive training method based on the maximum mutual information
estimation [1] (MMIE) are implemented. Further, I-smoothing
[3] technique is used to regularize the MMIE estimation. In
order to evaluate the difference between realization methods,
the conventional MRED training method, which was originally
proposed to estimate GMMs [9], is applied to CD-HMMs (cf.
Section 3.4) and compared with the proposed method (MRED
(single)).

As in the case of the I-smoothing technique, the following
MLE-based hyperparameters are used in the MRED systems in
order to reduce the tuning uncertainty.

µ0
g,d =χ1

g,d/γ
0, γ0

g = χ0
g, η0

g = χ0
g/2,

β0
g,d =

`

χ2
g,d − χ0

g(µ
0)2
´

/2, φ0
s,m = χ0

G(s,m),
(20)

where χ0
g , χ1

g,d, and χ2
g,d are occupancy, 1st-order statistics,

and 2nd-order statistics of the (g, d)th Gaussian pdf obtained
by using the FB algorithm performed with a model obtained
by the maximum likelihood procedure. Further, the following
hyperparameter settings are used.

δ0i,k = N(Xi), c0i,k = constant, (21)
where N(Xi) is the number of frames in the ith feature se-
quence in the training dataset. The remaining hyperparameters
(language model scale factor, prior parameter c0i,k, learning rate
parameter used in the MMIE system, and smoothing factor of
I-smoothing) and the number of iterations are determined by
using the development set.

Table 1 lists the phoneme error rates of the compared meth-
ods. In the table, the results evaluated by using the complete
test data (62,901 phonemes) of TIMIT is presented in paren-
theses as supplemental information. First, we confirmed that
the MRED systems successfully reduce errors as compared to
MLE systems. Thus, it is confirmed that the proposed method
provides posterior pdfs of the parameters that have sufficient
discriminative performance.

We confirmed that the I-smoothing technique was not very
helpful in this experimental setting. We consider that this is be-
cause sufficient data is provided without the overfitting effects.
Even in such a configuration, it is confirmed that MRED outper-
formed the MMIE systems. This advantage might be attributed
to the differences in their optimization methods. Because the
proposed approach is convex when the statistics are fixed, it
might leap local optima. Further, the proposed method outper-
formed the conventional MRED method that is used for train-
ing of GMMs (MRED (single)). It is considered that the pro-
posed approach provided a more accurate approximation than
the conventional one by considering wider variations of the la-

tent variables of CD-HMMs, as discussed in Section 3.4. In
fact, since relaxation of constraints that would results in over-
smoothing of the posterior pdf appeared in the MRED (single)
systems, the performances were lower than that of MMIE sys-
tems which correctly maximize discriminative performances.
Thus, we confirmed that MRED is successfully applied to train-
ing of acoustic models used in continuous speech recognition
by using the proposed method.

5. Conclusions
In this paper, we derived a discriminative training method by
using the principle of minimum relative entropy discrimination
(MRED) in order to provide a Bayesian interpretation of dis-
criminative training methods. We proposed an accurate real-
ization method of MRED to derive an efficient training method
for continuous-density hidden Markov models. We confirmed
that the proposed MRED method outperformed the conven-
tional MMIE method with the I-smoothing techniques and the
conventional MRED method originally proposed aiming for the
estimation of Gaussian mixture models.

In the future, we intend to incorporate knowledge about the
significance of errors as in the case of MPE [3] and boosted
MMI/MPE [13] methods. We also intend to carry out experi-
ments that involve large vocabulary continuous speech recogni-
tion tasks. Furthermore, comparative investigations on the prior
parameters should be carried out.

Acknowledgement The authors would like to thank the valu-
able discussions in the Lehrstuhl für Informatik 6, RWTH
Aachen University. This study was partially supported by a
Grant-in-Aid for JSPS Fellows (21·04190) from the Ministry
of Education, Culture, Sports, Science and Technology, Japan.

6. References
[1] L. Bahl, P. Brown, P. de Souza, and R. L. Mercer, “Maximum mu-

tual information estimation of hidden Markov model parameters
for speech recognition,” in Proc. ICASSP, 1986, pp. 49–52.

[2] E. McDermott and S. Katagiri, “String-level MCE for continuous
phoneme recognition,” in Proc. EUROSPEECH, 1997, pp. 123–
126.

[3] D. Povey and P. C. Woodland, “Minimum phone error and
I-smoothing for improved discriminative training,” in Proc.
ICASSP, 2002, pp. I–105–I–108.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proc. 5th COLT, 1992, pp. 144–
152.

[5] F. Sha, “Large margin training of acoustic models for speech
recognition,” Ph.D. dissertation, Univ. of Pennsylvania, 2006.

[6] D. Yu, L. Deng, X. He, and A. Acero, “Large-margin minimum
classification error training: A theoretical risk minimization per-
spective,” Computer Speech and Language, pp. 415–429, 2008.

[7] T. S. Jaakkola, M. Meila, and T. Jebara, “Maximum entropy dis-
crimination,” Advances in Neural Information Processing Sys-
tems, vol. 12, pp. 470–476, 2000.

[8] F. Valente and C. Wellekens, “Maximum entropy discrimination
(MED) feature subset selection for speech recognition,” in Proc.
ASRU, 2003, pp. 327–332.

[9] D. P. Lewis, “Combining kernels for classification,” Ph.D. disser-
tation, Columbia Univ., 2008.

[10] Y. Kubo, S. Watanabe, A. Nakamura, E. McDermott, and
T. Kobayashi, “A sequential pattern classifier based on hidden
markov kernel machine and its application to phoneme classifi-
cation,” IEEE J. Sel. Topics in Signal Process., 2010 (to appear).

[11] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
margin methods for structured and interdependent output vari-
ables,” J. Mach. Learn. Research, vol. 6, pp. 1453–1484, 2005.

[12] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recogni-
tion using hidden Markov models,” Acoust., Speech, Signal Pro-
cess., IEEE Trans. on, vol. 37, no. 11, pp. 1641–1648, 1989.

[13] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon,
and K. Visweswariah, “Boosted MMI for model and feature-space
discriminative training,” in Proc. ICASSP, 2008, pp. 4057–4060.


