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Abstract
In this paper, we investigate the advantages of frequency mod-
ulation (FM) features by conducting speech recognition exper-
iments and statistical analysis. The importance of temporal as-
pects in speech recognition has been discussed along with the
importance of amplitude modulation (AM) and frequency mod-
ulation. Recently, we have proposed a speech recognition sys-
tem that is based on the combination of AM and FM features
and confirmed its efficiency experimentally. Although the pro-
posed speech recognizer assumes complementarity between the
AM and FM features, it was not evaluated in previous studies.
In this paper, in order to evaluate the complementarity between
two types of features, we conducted continuous digit recogni-
tion tasks in artificial noisy conditions. We confirmed that the
error rates of each classifier are significantly different depend-
ing to kind of noise. Then, we evaluated the statistical indepen-
dency between these two types of features. We confirmed that
the behaviors of these features are independent in realistic noisy
environments.
Index Terms: Speech recognition, temporal features, robust-
ness, frequency modulation

1. Introduction
The importance of temporal aspects in speech recognition has
been discussed along with the importance of amplitude modu-
lation (AM) and frequency modulation (FM). Features based on
the FM of speech have been investigated by employing several
methods. For example, Wang et al. employed the segmental
average instantaneous frequencies of signals [1]. Paliwal et al.
proposed a method based on spectral centroids that depends on
FM of signals [2]. Dimitriadis et al. employed the average of
instantaneous frequencies weighted by amplitudes [3].

The possibility of using temporal analysis of FM features
for automatic speech recognition (ASR) are confirmed by hear-
ing experiments conducted by Kazama et al. [4]. In these ex-
periments, it is confirmed that the information on narrowband
carrier signals contributes to the intelligibility of speech signals
when the carriers are analysed using long-term analysis win-
dows.

Motivated by the results of these hearing experiments, we
proposed a temporal trajectory analysis of FM for ASR. We
confirmed the efficiency of the combination of the AM and FM
features in our recent experiments [5, 6].

Although the proposed speech recognizer assumes comple-
mentarity between the AM and FM features, it was not evalu-
ated in previous studies. Therefore, the advantages of the FM
analysis have not been clarified.

In this paper, we conduct several experiments to understand
how FM features work in ASR. We show the complementarity
between the AM classifier and the FM classifier by conducting
speech recognition tasks in artificial noise conditions. Then, we
show the statistical independency of these two types of features.

2. Classifiers for AM and FM
In this section, we present a speech recognizer, which is used in
the speech recognition experiments in this paper.

2.1. AM Classifier (HATS)

We employ the HATS method introduced by Chen et al. as
an AM classification method [7]. This method can efficiently
capture the amplitude modulation of speech signals.

In this section, we describe the HATS method.

2.1.1. AM Emphasis Using MLP-OL

Fig. 1 shows the block diagram of a HATS classifier.
First, the input signals are separated by a Bark filterbank

[8]. Subsequently, the output of the filterbank is processed by
MLP-OL1.

MLP-OLs are used to extract significant modulation com-
ponents from an envelope. MLP-OL is the general MLP classi-
fier during the training phase.

The input signal xi of the ith neuron in the input layer of
the MLP-OL at the nth frame is defined by

xi = Eb
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Figure 1: Block diagram of HATS.

1MLP-OL stands for MLP minus output layer



Here, L is the number of dimensions of the input vector (must
be odd) and Eb(n) is the energy of the output of the bth channel
of the filterbank at time n. Typically, the frame rate of Eb is set
to 100 Hz, and L is set to 51.

As is typical for the MLPs trained to estimate the posterior
probabilities, all the MLPs are trained using the teaching signal,
which is “1.0” for the monophone associated with the central
frame and “0” for all the others. We use the standard error back-
propagation algorithm to optimize the weights of connections
between layers so that the mean squared error is minimized.

During the application phase, the output layer of the MLP
is removed. Because the input vector xi can be interpreted as
the time-series signal, the output of hidden neurons can be in-
terpreted as the convolution of x and the weights between in-
put neurons and the hidden neuron with a nonlinear sigmoid
function. Therefore, the output of hidden neurons has a fixed
frequency response that can improve the distinguishability of
x. The filter constructed using the above procedure is called a
“matched filter.”

2.1.2. Tandem Approach for Acoustic Modeling

To recognize the output of matched filters, the HMM/MLP tan-
dem approach is used in HATS [9]. In this approach, the input
feature vector is classified under monophones by an MLP.

The MLPs in the tandem approach are also trained to esti-
mate the posterior probabilities of the associated monophones;
the teaching signal for training is “1.0” for the monophone as-
sociated with the central frame and “0” for all the others.

2.2. FM Classifier

In order to apply the advantages of HATS, which can find a
matched modulation component from the training data, we ap-
ply the HATS method to an FM signal.

Fig. 2 shows the block diagram of an FM classifier.

2.2.1. FM Extraction

Several methods are proposed for AM-FM decomposition, such
as the Teager energy operator (TEO) method [10] and the
method based on the Hilbert transform [11]. Since our first mo-
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Figure 2: Block diagram of FM classifier.

tivation is based on the human perception of the zero-crossing
points of signals, we define FM of speech signals by employing
the zero-crossing points of the signals.

The logarithmic pseudo-instantaneous frequency (LPIF) is
obtained by performing the following steps:

1. Measure the time interval D(n) between the preceding
and the following zero-crossing points for each sample.

2. The LPIF (P (n)) at time n is defined by log(π/D(n)).

LPIFs can be considered as variants of the zero-crossings
with peak amplitude (ZCPA) features [12] in which amplitude
weighting is omitted. Amplitude weighting can improve the dis-
tinguishability of features. However, weighting makes features
dependent on AM information. As our objective is to compen-
sate the weakness of AM features, informational independence
is important.

We take the average of the LPIF signal for each 25 ms win-
dow and then slide the window by 10 ms in order to achieve an
equivalence between the frame rate of FM and AM features.

2.2.2. FM Emphasis

First, input signals are separated by a Bark filterbank , which is
used in the AM classifier. Because successive processes require
time-domain signals, filters are implemented using FIR filters.

Subsequently, LPIF extraction is performed at each channel
output in the filterbank.

The input signal xi of the ith neuron in the input layer of
the MLP-OL at the nth frame is defined by

xi = Pb
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Similar to the AM classifier, we employ an MLP to classify
the outputs of FM-matched filters under monophones.

3. Experiments and Discussions
We confirmed the efficiency of the AM/FM combination
(AFMC) method by performing the noisy digit recognition task
reported in [6]. The AFMC method reduced 43.6% of the word
error at an SNR of 10 dB. The results also show that our FM
classification method outperforms the FM analysis method em-
ployed in the previous AM-FM method.

In this paper, we focused on the reason behind the efficiency
of the combination method. We discuss the results of the speech
recognition experiments and statistical analysis.

3.1. Noisy Speech Recognition Experiments

In order to investigate the advantages of the FM analysis, we
defined various artificial noises and evaluated the robustness for
these noises.

The properties of noise that we considered are listed below.

• Stationary noise or burst noise,

• Narrowband noise or wideband noise (white noise).

We created different noise patterns by combining these
properties.

• White noise (wn)
stationary and full-range white noise.

• Band-pass filtered white noise (bpf wn)
The central frequency of a band-pass filter is obtained
from uniform random values ranging from 1,000 Hz to
3,000 Hz, and the bandwidth is obtained from uniform
random values ranging from 100 Hz to 2000 Hz.



• Burst noise (burst wn)
White noise of 250 ms duration and silence of 250 ms
duration are added alternately

• Band-pass filtered burst noise (burst bpf wn)
The parameters of a band-pass filter are same as bpf wn.

The spectrograms of these noises are depicted in Fig. 3.

The training set is taken from CENSREC-1 [15], which is
the Japanese translation of the AURORA-2 data set. The train-
ing set used for both the MLP and HMM comprises 8,440 utter-
ances of clean speech from 110 speakers.

We added the 4 above-mentioned noises at 10 dB SNR to
clean speech data in the test set of CENSREC-1, which com-
prised 1001 utterances from 104 speakers.

Table 1 shows the word accuracies of the AM and FM meth-
ods in the tested environments. From the results, we observed
that the FM analysis has certain disadvantages with respect to
narrowband noises. However, the FM analysis is advantageous
for full-range noises. In contrast, the AM analysis is often de-
graded under full-range burst noise.

The error rates of each classifier are significantly different
depending on characteristics of noise. Therefore, we confirmed
that these two classifiers share a complementary relation.

3.2. Independency between AM and FM

Since all features are assumed to be dependent on phonetic in-
formation, most of features are interdependent in clean environ-
ments. However, under noisy conditions, some of the features
are degraded by environmental noise. Therefore, since the cor-
rupted features depend on the noise sources, they are indepen-
dent of the robust features.

In order to understand the complementarity in a realistic
noisy environment, we measured the independency of the fea-
tures in noisy environments.

In order to support our argue on the independency of the
behaviors of these features, a measure indicating the indepen-
dency between non-stationary signals is necessary. We em-
ployed the concept proposed by Ando et al., which can deal
with non-stationary time-series variables [13]. According to
this concept, the squared sum of segmental covariance indicates
the independency of two variables.

Using this concept, we defined the independency measure
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Figure 3: The spectrograms of selected noise patterns.

D(x, y) as follows:

D(x, y) = K(x, y) − K(x, x) − K(y, y)

2
, (3)

K(x, y) =
X

t

Eτ [x̃(t, τ) · ỹ(t, τ)T ]2 + C, (4)

x̃(t, τ) = x(t + τ) − x(t), (5)
x(t) = Eτ [x(t + τ)]. (6)

Here, x denotes the original feature vectors, and E[.] de-
notes the operations carried out to measure the empirical ex-
pectation by varying τ ∈ [−T, T ](T = 25). The constant K
ensures positive distances. In [13], it is suggested that T must
be determined so that observed signals can be assumed to be
quasi-stationary in xn(t + τ).

Fig. 4 shows the component dependency matrix D(x, y)
of the features. The evaluated features are the energies (AM)
and LPIFs (FM) of the output signals of the Bark filterbank (14
channels for AM features and FM features).

The analyzed signals are taken from multiconditional train-
ing set in CENSREC-1. Therefore, the independency is mea-
sured using speech signals that are corrupted by realistic envi-
ronmental noise.

From the distance matrices, we confirmed that the AM fea-
tures are highly dependent on each other. FM features are
highly independent of all the other features, including the AM
features. We confirmed that the AM features and FM features
are independent of each other. Since the independency indi-
cates that each type of features is robust to different types of
noise, the complementarity between these two types of features
is confirmed.

Several studies performed to understand the theoretical re-
lation between AM and FM indicate that AM and FM are not
completely independent [11, 14]. Our results show that the AM
features are slightly dependent on the FM features in the neigh-
bouring subband.

4. Conclusion
In this paper, we described the classifiers of AM patterns and
FM patterns and discussed the complementarity of these classi-
fiers.

We evaluated complementarity of each classifier by con-
ducting continuous speech recognition experiments under arti-
ficial noisy conditions. We confirmed that the error rates of the
two classifiers are significantly different depending on charac-
teristics of noise.

Furthermore, the statistical independency between two
types of features was measured. We confirmed that the AM and
FM features are statistically independent. Therefore, we con-
firmed that these features have different characteristics when the
signals are corrupted by environmental noise.

We confirmed that the AM classifiers and FM classifiers
share a complementary relation. Therefore, the method that
combines these classifiers functions effectively.

Table 1: Word accuracies in noisy environments (10 dB) of the
compared methods as percentages.

AM FM
wn 45.53 49.46
bpf wn 35.31 2.89
burst wn 49.12 62.90
burst bpf wn 62.90 34.66
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Figure 4: Component dependency matrices of the features. The dependency between the nth component and the mth component of
the features are represented as intensity at point (m, n) (black: dependent, white: independent). (a) dependency between all features;
(b) dependency matrix of AM features; (c) dependency between AM features and FM features; (d) dependency matrix of FM features.
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