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Abstract
Traditional feature extraction methods for automatic speech

recognition (ASR), such as MFCC (Mel-frequency cepstral co-
efficients) and PLP (perceptual linear prediction) [6], are ex-
tracted from short-term spectral envelopes and can be used to
realize promising ASR systems. On the other hand, features ex-
tracted by TRAPs-like classifiers [2] are based on long-term en-
velopes of narrow-band signals. These two forms of feature ex-
tractions use a mutual representation of energy in narrow band
signals.

We have developed a feature extraction system that depends
on not only the energy but also the modulation of carrier sig-
nals. Carrier signals involve attributes such as the spectral cen-
troid, spectral gradient, number of zero-crossing points, and fre-
quency modulation. Some experiments show that not only the
spectral envelope and its modulation but also the zero-crossing
points and frequency modulation form a significant portion of
human speech perception [4].

In this study, we propose a method of carrier analysis, eval-
uate this method, and discuss the effectiveness of carrier anal-
ysis for ASR. Our method can reduce the phoneme error rate
from 45.7% to 38.6%.
Index Terms: feature extraction, analytic signal, tandem ap-
proach, temporal feature

1. Introduction
The traditional features of automatic speech recognition (ASR),
such as MFCC (Mel-frequency cepstral coefficients) and PLP
(perceptual linear prediction) [6], are extracted from the short-
term spectral envelopes of speech signals and can be used with
hidden Markov models (HMMs) to realize promising ASR sys-
tems.

HMMs are based on the assumption that signals are station-
ary in specific segments; however, real speech signals are not
stationary in nature. In order to capture the dynamic features of
speech signals in their stationary form, it is conventional prac-F u l l � b a n d , s h o r t � t e r m M u l t i � b a n d , l o n g � t e r m( b ) T R A P s( a ) M F C C , P L P , . . .

Figure 1: (a): Traditional feature; (b): TRAPS

tice to augment these features by their derivatives and accelera-
tions; however, this technique has its limitations.

These limitations motivate us to determine a more effective
approach toward capturing dynamic features of speech signals.
Hermansky et al. invented TRAPS (TempoRAl PatternS) to en-
able the effective use of the dynamics of narrow-band energy
envelopes (Figure 1). The combination of TRAPS and PLP ac-
complishes high-accuracy speech recognition [1].

An advantage of dynamic features is that it alleviates unre-
liable cues from static features. Therefore, the incorporation of
another feature derived by another attribute of the signals could
improve the accuracy.

In general, a signal can be represented as a product of two
signals; the envelope and the carrier. Traditional features and
TRAPS are extracted using only envelopes. However, it was re-
ported that carriers are also important for human speech percep-
tion [4]. Carrier signals involve attributes such as the spectral
centroid, spectral gradient, number of zero-crossing points, and
frequency modulation. These attributes are discarded in tradi-
tional feature extraction methods.

We focus on the effectiveness of carriers in speech recogni-
tion and propose a method to incorporate them.

In this paper, we first introduce our proposed system in sec.
2. The experimental results are provided in sec. 3, and these
results are discussed in sec. 4.

2. S-LTHP System

Figure 2 shows the overview of our feature extraction system.
We named our system “separated long-term Hilbert transform
pair” (S-LTHP).

2.1. Preprocessing

First, the filter-bank that is designed to simulate frequency
responses of human auditory perception is applied. Unlike
TRAPS-like classifiers [2], this filter-bank is implemented us-
ing FIR filters.

The frequency response is defined by the following equa-
tions. (Figure 3)
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Figure 2: S-LTHP System Overview
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(2)

Dn(ω) = Ψ(Ω(ω) − n) (3)

Next, we separate these signals into envelopes and carriers.
A narrow band signal x(n) is generally expressed as

x(n) = exp(m(n)) cos(Ωcn + Φ(n)) (4)

In this equation, Ωc denotes the central frequency of the carrier
signal and Φ(n) denotes the instantaneous phase modulation.

cos(Ωcn + Φ(n)) represents the carrier and depends on
Φ(n). Therefore, Φ(n) is convenient for representing carrier
signals.

exp(m(n)) represents the envelope. The logarithmic en-
velope m(n) is often used in other features such as MFCC,
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Figure 3: Frequency response of filter D(n)

PLP, and TRAPS. In this model, the sign of x(n) is depends on
the carriers; therefore, cos(Ωcn+Φ(n)) involves zero-crossing
points and spectral centroid.

In order to extract m(n) and Φ(n) from x(n), an analytic
signal x+(n) is used.

The analytic signal is defined as follows:

x+(n) = x(n) + jx̂(n) (5)
= exp(m(n)) cos(Ωcn + Φ(n)) +

j exp(m(n)) sin(Ωcn + Φ(n)) (6)

where x̂(n) is the Hilbert transform of x(n).
The amplitude envelope a(n) and instantaneous phase φ(n)

are defined by the following equations;

a(n) = |x+(n)| (7)
φ(n) = arg x+(n) (8)

Next, we calculate Φ(n) and m(n) by using the following
equations

m(n) = log(a(n)) (9)

Φ(n) = φ̂(n) − Ωcn (10)

φ̂(n) denotes the unwrapped φ(n).
Ωc is defined as

Ωc =
φ(N − 1) − φ(0)

N
(11)

where N is the length of signal x(n).
Finally, we obtained two representations of the sub-band

signal: m(n) and Φ(n). We resampled these representations
at 100 Hz and normalized the mean to 0.5 and the variance to
0.25 over each utterance. Figure 4 depicts m(n) and Φ(n) of
the fifth band of central phoneme class /r/.

2.2. MLPs

The input vector of the envelope MLPs at time t is m(n) (n ∈
[t − 25, t + 25]). The input vector of the phase MLPs at time t
is Φ(n) (n ∈ [t − 25, t + 25]).

As is typical for the MLPs trained to estimate posterior
probabilities, all the MLPs are trained using output targets that



are “1.0” for the monophone associated with the central frame
and “0” for all others. We have employed the standard error
back-propagation algorithm as the training method.

Next, merging MLPs are used to merge the estimations of
the sub-band MLPs. The input vector of the merging MLPs is
defined by the concatenated vector of the output of the hidden
layers in sub-band MLPs. The teaching signals are the same as
the sub-band MLPs.

2.3. Feature Remapping

The output vector of the MLPs that approximate the posterior
probabilities of the phonetic classes have a skew symmetry and
are incompatible with the Gaussian mixture model (GMM).

It is necessary to adapt the feature distribution to the Gaus-
sian model in order to achieve stable recognition.

We use logarithmic function for non-linearity and
Karhunen-Loeve Transforming for orthogonalization.

3. Experiments
3.1. Basic Comparison

In this section, we evaluate the performance of the proposed
system.

To ignore the performance of language models, we con-
ducted context-free continuous phoneme recognition in this ex-
periment. The training set used for both MLP and HMM train-
ing comprised approximately 16 h of spontaneous speech data
from “the Corpus of Spontaneous Japanese” (CSJ). All these
models were trained to be speaker and gender independent. The
accuracy is measured using spontaneous speech data (approxi-
mately 1 h) from CSJ.

The baseline is the MFCC feature extraction system
that is augmented by the derivations and accelerations of
the MFCC and the derivation and acceleration of energy.
(MFCC E D A N Z, 38 dims.)

We selected a TRAPS-like classifier, called hidden-
activation TRAPS (HATS), for comparison. Currently, HATS
has achieved the highest accuracy among TRAPS-like classi-
fiers [3].

Three variants of the HATS system are compared:

• HATS (26 dims.),

• MFCC (12 dims.) augmented by HATS (26 dims.; total:
38 dims.), and

• baseline (38 dims.) augmented by HATS (26 dims.; to-
tal: 64 dims.).

Three variants of the S-LTHP system are compared:

• S-LTHP (26 dims.),
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Figure 4: Left: m(n); Right: Φ(n)

Table 1: Phoneme error rate

System Phoneme Error
Description Error Rate Reduction
(# of dims.) (%) (% Rel.)
Baseline:

MFCC E D A N Z (38) 45.7 -
HATS (26) 47.3 -3.5

S-LTHP (26) 45.8 -0.2
HATS + MFCC (38) 43.1 5.6

S-LTHP + MFCC (38) 40.9 10.5
HATS

+ MFCC E D A N Z (64) 39.4 13.8
S-LTHP

+ MFCC E D A N Z (64) 38.6 15.5

Table 2: Frame error rate of variants

Frame Error
System Error Rate Reduction

Description (%) (% Rel.)
Baseline: HATS 25.1 -

IPP 41.3 -64.5
LTHP 24.1 4.0

S-LTHP 22.1 12.0

• MFCC (12 dims.) augmented by S-LTHP (26 dims.; to-
tal: 38 dims.), and

• baseline (38 dims.) augmented by S-LTHP (26 dims.;
total: 64 dims.).

Table 1 summarizes the phoneme error rate (%insertion+
%deletion + %substitution) of the systems being compared.

3.2. Comparing Variation Systems

In order to evaluate the effectiveness of instantaneous phases,
we conducted another comparison experiment. Many factors in-
fluence the phoneme error rate in experiments that use HMMs.
Therefore, we examined the system using the frame accuracy of
merging MLP’s output vector.

We selected two variants of S-LTHP for comparison. The
first variant to be compared is instantaneous phase patterns
(IPP; Figure 5-b). The HATS system is equivalent to S-LTHP
system without phase MLPs. (Figure 5-a). We can consider the
opposite classifier, an S-LTHP system without envelope MLPs.
The accuracy of this model might indicate the effectiveness of
instantaneous phase clearly.

We can consider several methods to combine the instan-
taneous phase and envelope. We examined another structure
of combination that analyzes the instantaneous phases and en-
velopes simultaneously, called LTHP (Figure 5-c). The S-LTHP
estimation process involves separation by the type of input sig-
nals; envelopes or instantaneous phases. In the concept of
multi-band ASR, it is considered that separation by sub-band is
effective. However, the effectiveness of separation by the type
of input signals is unclear.

All MLPs (excluding merging MLP) used by HATS, IPP,
LTHP, and S-LTHP have the same number of neurons in the
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Figure 5: (a): HATS; (b): IPP; (c): LTHP; (d): S-LTHP

hidden layer.
Table 2 summarizes the frame error rate of the systems be-

ing compared. The frame error rate is measured by labeled
spontaneous speech data (approximately 1 h) from CSJ that is
not present in the training data set.

4. Discussions
From Table 1, it is observed that the proposed system exhibits
considerable improvement from baseline and sufficient im-
provement from HATS. The best performance was achieved by
the S-LTHP + MFCC E D A N Z feature extraction method,
which showed a gain of 38.6% in the phoneme error rate and
reduced 15.5% of the phoneme error from the baseline system
(MFCC E D A N Z). In the comparison with HATS, our sys-
tem reduced approximately 3% of the phoneme error.

Table 2 clearly shows the effectiveness of the instantaneous
phase analysis. We observed that IPP models have poor accu-
racy (41.3% in the frame error rate); however, they might be
suitable for ASR. The input of the IPP models is the resampled
modulation component of the xinstantaneous phase. Therefore,
this component contains phonetic information which is less than
that in the resampled envelopes.

Conventional studies reported that the resampling of en-
velopes rarely results in a loss of phonetic information. How-
ever, we confirmed by preliminary listening experiments that
the resampling of instantaneous phases often results in such a
loss. Another method for carrier analysis without resampling
might improve the accuracy.

The results of LTHP and S-LTHP models indicate that the
structural constraints implemented by S-LTHP can eschew the
local optimum in their training and utilize neurons in hidden
layers more efficiently. Therefore, it is preferred that instanta-
neous phases and envelopes are discriminated separately.

5. Conclusions
In this study, we proposed a method to analyze carriers of
narrow-band signals using a tandem approach, called S-LTHP.
S-LTHP is the method that analyzes temporal patterns of ana-
lytic signal using MLPs.

We evaluated the performance of the proposed method by
continuous phoneme recognition without using any language
models. The proposed system exhibits considerable improve-
ment from baseline and sufficient improvement from HATS.

To confirm the effectiveness of the carrier analysis, we have
developed two variants of S-LTHP: IPP and LTHP and evalu-
ated the output of the MLPs and their frame error rates. We
confirmed that the incorporation of long-term carrier analysis is
effective for improving the accuracy of speech recognition, and

the structural constraints implemented by S-LTHP can eschew
the local optimum in their training.
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