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ABSTRACT

With the aim of achieving a computationally efficient optimization
of kernel-based probabilistic models for various problems, such as
sequential pattern recognition, we have already developed the ker-
nel gradient matching pursuit method as an approximation technique
for kernel-based classification. The conventional kernel gradient
matching pursuit method approximates the optimal parameter vec-
tor by using a linear combination of a small number of basis vec-
tors. In this paper, we propose an improved kernel gradient match-
ing pursuit method that introduces orthogonality constraints to the
obtained basis vector set. We verified the efficiency of the proposed
method by conducting recognition experiments based on handwrit-
ten image datasets and speech datasets. We realized a scalable kernel
optimization that incorporated various models, handled very high-
dimensional features (> 100 K features), and enabled the use of large
scale datasets (> 10 M samples).

Index Terms— Kernel methods, hidden Markov models, or-
thogonal expansion, speech recognition

1. INTRODUCTION
Kernel methods are promising for handling nonlinear distortion
problems in pattern recognition; however, due to their computa-
tional costs, the application fields for kernel methods remain lim-
ited. When kernel methods are employed, the computational time
required for parameter estimation becomes at least O(N2), where N
is the number of training samples. In some application fields, such
as speech recognition, the approach is computationally prohibitive
since N exceeds 10 million and continues to grow in common
speech recognition tasks. Therefore, an efficient approximation
method for kernel methods are necessary to enable kernel-based
representation in a large scale task.

Computationally efficient approximation frameworks for kernel
methods have been well studied in the last decade, e.g. [1], and some
of these approaches achieved a computational time that was almost
linear in relation to the number of samples used for training. How-
ever, since these approaches are only designed for specific model
training criteria and for specific kinds of discriminant functions, it is
not easy to apply them to arbitrary methods of model training. For
example, they cannot be applied straight forwardly to latent models.
Thus, if we are to enlarge the application fields of kernel methods,
we must realize a flexible framework for approximating the kernel
methods that can incorporate various models and training criteria
with large scale datasets.

A flexible way to approximate kernel methods is to employ the
Nyström method [2] that randomly selects a limited number of basis
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vectors from a given training dataset where the conventional ker-
nel methods use all the training samples as basis vectors. However,
the Nyström method cannot select appropriate basis vectors when
the number of vectors is reduced to realize computational efficiency
because the method is based on random selection. Alternative ap-
proaches, which involve dimensionality reduction in feature spaces,
such as kernel principal component analysis [3] and kernel Fisher
discriminant analysis [4], can identify efficient basis vectors; how-
ever, these kernel-based dimensionality reduction methods require
O(N3) computational time for pre-processing.

Recently, novel methods based on addition of efficient basis
vectors, rather than selection/ limitation, have been proposed [5–
7]. In contrast to the dimensionality reduction methods these meth-
ods search efficient basis vectors and increase the dimensionality by
adding these vectors iteratively. For example, the kernel matching
pursuit (KMP) method [5] selects basis vectors from a given train-
ing dataset to approximate a solution by employing the matching
pursuit theory [8], which greedily selects a basis vector that maxi-
mizes the projection of the optimal parameter vector. The cutting
plane subspace pursuit (CPSP) method [6] extends the cutting plane-
based training of support vector machines (SVMs) [9] by incorpo-
rating pre-image optimization that finds y ∈ RD such that φ(y)
represents an essential basis vector, where φ is a feature mapping
function implicitly defined by a given kernel function. The kernel
gradient matching pursuit (KGMP) method [7], which is briefly de-
scribed in the following section, generalizes the CPSP method by
incorporating pre-image optimization to find pre-image vectors that
approximate gradient vectors of a performance function of model
training. Although the strategy suggested by the KGMP method is
promising for achieving the above objectives, as described in the fol-
lowing sections, the KGMP method is inefficient in some cases.

In this paper, in order to increase dimensionality efficiently, we
extend the KGMP method by introducing an efficient criterion that
considers the orthogonality of the basis vectors as well as the im-
provement of a given performance function. This paper applied the
proposed method for the various datasets (MNIST handwritten dig-
its, TIMIT, and WSJ). These applications exceeded the scales of the
state-of-the-art applications of the kernel methods in terms of the
number of samples (> 10 M samples). Moreover, these applications
exceeded the scales of the conventional ASR in terms of the dimen-
sionality of the feature vectors we used (> 100 K features).

2. KERNEL GRADIENT MATCHING PURSUIT

In this section, the underlying theory behind the KGMP method
is first briefly described. Then, this theory is applied to realize
kernel-log-linear models. Both the proposed method and the KGMP
method are based on the theory described in this section, which
involves iterative dimensionality expansion performed by appending
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efficient basis vectors during a gradient ascent optimization process.

2.1. General Formulation

The KGMP method is an optimization method that assumes the fol-
lowing condition in derivative vectors, with respect to a parameter
vector λ, of the given objective function F (λ).

∇λF (λ) =
NX

n=1

dn(λ)φ(xn)− cλ, (1)

where φ is a feature mapping function that transforms low-dimen-
sional observation vectors into very high-dimensional feature vec-
tors, dn(λ) is the weight of each training sample depending on the
choice of the performance function F , and c is a regularization con-
stant. Most of the training criteria of kernel linear models with L2-
regularization terms have this form.

We assume that the parameter vector is represented by a small
number, denoted by M , of basis vectors φ(ym) (m ∈ {1, .., M})
that have pre-image vectors ym in the observation space (RD), as
follows:

λ =
MX

m=1

βmφ(ym). (2)

To identify a small number M $ N of basis vectors ym that
lead to the improvement of performance function F , a kernel match-
ing pursuit algorithm [5] and pre-image optimization are introduced.
As in [5], a new basis vector that realizes a good approximation of
the gradient vector∇λF (λ) is appended during the optimization of
βm in Eq. (2). However, a new basis vector is chosen not only from
the training dataset, but also from the entire observation space by
solving a pre-image problem. The new basis vector to be appended
can be obtained by solving the following pre-image optimization
problem:

Ŷ =argmin
Y

min
βM+1,··· ,βM+R

‚‚‚‚‚∇λF (λ)−
M+RX

m=M+1

βmφ(ym)

‚‚‚‚‚

2

,

(3)

where Y
def
= {yM+1, yM+2, · · ·yM+R}. Although the above op-

timization problem is not analytically solvable in general, the nu-
merical approach is still acceptable if the kernel function is differ-
entiable. In contrast to the approximation method based on data
selection, such as KMP [5], solving this numerical optimization is
important for both approximation accuracy and computational ef-
ficiency because finding the best Y from the entire vector space
RD is more computationally efficient than finding the best Y from
the given training samples when the number of training samples is
large. Unfortunately, this pre-image optimization is no longer con-
vex. However, since this optimization is only used to increase the
dimensionality of the subspace, the use of the basis vectors obtained
by solving this optimization always contributes to improvements in
the main objective function F , even though the pre-image optimiza-
tion (Eq. (3)) converges to a local optimum.

2.2. Application to Kernel-Log-Linear Models
As an example, we employ a kernel-log-linear model that defines
the conditional probability of a label l ∈ L, given observation vector
x ∈ RD , by using a parameter vector λ =

ˆ
θT

1 , · · · , θT
l , · · ·

˜T, as

follows:

P (l|x, λ) =
exp

nPM
m=1 βl,mK(ym, x)

o

P
l′ exp

nPM
m=1 βl′,mK(ym, x)

o . (4)

It should be noted that we changed the suffix of β to the class variable
l and the basis vector variable m to share the same basis vector set
among all classes. By employing a zero-mean Gaussian prior proba-
bility density function (pdf) of the parameter vector and the training
dataset D = {(x1, l1), · · · (xN , lN )}, the maximum-a-posteriori
(MAP) estimation of the above kernel-log-linear model is defined
as follows:

F (λ)
def
=

NX

n=1

 
βT

lnkn − log
X

l′

exp βT
l′kn

!
− c

2

X

l

βT
l Gβl,

(5)
where βl denotes a coefficient vector, βl

def
= [βl,1, βl,2, · · · ]T, kn is

a projection of the tth training vector, kn = [K(xn, y1), K(xn, y2), · · · ],
and the (i, j)th element in the gram matrix G is gi,j = K(yi, yj).

This example yields a gradient vector∇θlF (λ) as follows:

∇θlF (λ) =
NX

n=1

(δ(l, ln)− P (l|xn, λ))
| {z }

dn,l(λ)

φ(xn)− cθl. (6)

As shown in the above equation, the gradient vector of the MAP esti-
mation of the presented kernel-log-linear models can be expressed in
the form defined in Eq. (1). Thus, incremental subspace expansion
is accomplished by solving optimization Eq. (3).

3. ORTHOGONAL KGMP
In this paper, we propose an improved method for resolving the inef-
ficiency caused by redundant basis vectors by explicitly introducing
(nearly) orthogonal constraints to obtain a more accurate basis set.
We focus on near orthogonality because completely orthogonal ba-
sis vectors cannot be expressed by the pre-image form φ(y) with
some kernels, e.g. the Gaussian kernel.

As with the algorithm in the previous section, we consider the
incremental expansion of a basis vector set. Thus, we consider that
a nearly orthogonal basis vector set φ(ym) (m ≤ M) is already
obtained, and aim at finding another basis vector φ(yM+1) that re-
alizes orthogonality as well as a good approximation of the gradient
vector. In this section, we introduce the orthogonalized gradient vec-
tor ∇̂λF (λ), which is orthogonal to the existing basis vectors, and
substitute the original gradient vector ∇λF (λ) in Eq. (3) with the
orthogonalized gradient vector. The orthogonal gradient vector is
constructed by subtracting components that can be represented as a
linear combination of the existing basis vectors. By using this or-
thogonal gradient vector instead of the original gradient vector as
the approximation target, the basis expansion process is modified to
find a nearly orthogonal basis vector set.

To obtain the orthogonal gradient vector, we adapted the
Gram-Schmidt orthonormalization method to kernel-based ap-
proaches. The Gram-Schmidt orthonormalization of the existing
basis vectors is performed by finding an orthonormalization ma-
trix Q = {qi,j |i, j ∈ {1, .., M}} ∈ RM×M that leads vectors
bi =

PM
j=1 qi,jφ(yj)(i ∈ {1, .., M}) to form an orthogonal basis

vector set. The vector qi corresponding to the ith row in the matrix
Q can be computed by the following recursive procedure:

qi =
1p

q̃T
i Gq̃i

q̃i, where q̃i = ei −
i−1X

j=1

eT
i Gqjqj , (7)



Algorithm 1 Orthogonal Kernel Gradient Matching Pursuit
1: M ←M init, Y ← RandomSample({xn|∀t}, M init)
2: while M < M̂ do
3: Optimize βl,m (m ∈ {1, .., M}) ; Compute∇λF (λ)
4: for r = 1 to R do
5: Compute Q from the given∇λF (λ) and Y (Eq. (7))
6: Optimize ŷM+1 = argmin

yM+1

‖∇̂λF (λ)− φ(yM+1)‖2

7: Y ← Y ∪ {ŷM+1}; M ←M + 1
8: end for
9: end while

where the ith element of the unit vector ei is 1.
By using this orthonormalization matrix Q and the obtained or-

thonormalized basis vectors bm, the orthogonalized gradient vector
can be derived by subtracting all basis vectors bm, as follows:

∇̂λF (λ) =∇λF (λ)−ΦTQTQ

 
N+MX

n=1

αn(λ)kn

!
, (8)

where the definition of the nth projection vector kn is the same as
that in Eq. (5), and the mth row of the matrix Φ is φ(ym).

Thanks to the orthogonality constraint, we can obtain an approx-
imation of the solution of the optimization in Eq. (3) by employing
a greedy strategy, without solving the complex simultaneous opti-
mization directly. The greedy strategy we used to approximate the
orthogonalized gradient vector is also based on the matching pur-
suit approach. First, the gradient vector is approximated by using
only one pre-image basis vector φ(yM+1); and then, the remaining
basis vectors are obtained from the gradient vector that is orthogo-
nalized from the obtained basis vector φ(yM+1). This iterative or-
thogonalization is performed by updating orthogonalization matrix
Q, iteratively. Algorithm 1 is an example of the specific algorithm
used in the experimental section. In the algorithm, we avoid mul-
tiple basis optimization, but attempt to reconstruct a gradient vector
that is orthogonalized by all previously obtained basis vectors. In the
experimental section, we call this algorithm “Orthogonal KGMP.”

4. EXPERIMENTS
In this section, we evaluate the efficiency of the proposed method by
conducting recognition experiments on image and speech datasets

4.1. Handwritten digit classification
To evaluate the basic performance of the proposed method, we car-
ried out handwritten digit classification experiments as preliminary
experiments. In the experiments, we used the MNIST handwritten
digit dataset [10]. We designed a binary classification task and a
multiclass classification task. In the binary classification task, mod-
els are trained to classify digit images into two classes, “0”/ “1”/ “2”/
“3”/ “4” vs “5”/ “6”/ “7”/ “8”/ “9”, and, in the multiclass task, mod-
els are trained to predict the posterior probability of the correspond-
ing digit. We used the first 50,000 images in the training dataset for
parameter optimization, the remaining 10,000 images in the training
dataset for validation, and all 10,000 images in the test dataset for
evaluation. The observation vector consisted of the intensities of 28
× 28 pixels.

The hyper-parameters of Algorithm 1 were set at M init = 10,
M̂ = 1000, and R = 10. The remaining hyper-parameters (the reg-
ularization constant c and the γ variable in Gaussian kernels) were

Table 1. Prediction error rates of handwritten digit classification.
Method binary multiclass
Log-linear (linear) 13.7 8.2
Log-linear (Nyström) 6.0 5.4
Log-linear (KGMP) 3.3 4.1
Log-linear (Orthogonal KGMP) 1.9 2.5
SVM (linear) 12.3 7.9
SVM (CPSP) 1.8 3.2

tuned by using 10,000 validation images. As a reference, we com-
pared the prediction error rates with those of SVMs. For multiclass
classification of SVMs, we prepared one-vs-rest SVMs.

Table 1 shows the prediction error rates of the digit classification
tasks. We confirmed that using nonlinearity via kernel methods led
to better performance. Moreover, since KGMP-based basis selec-
tion outperformed the random basis selection method (the Nystöm
method), we could confirm that the strategy of KGMP, which re-
constructs gradient vectors incrementally, successfully captured an
efficient representation of high-dimensional parameter vectors. Al-
though the generalization performance of the log-linear models ap-
peared worse than that of linear SVMs, this discrepancy becomes
insignificant if we introduce the orthogonal KGMP method. We con-
sidered that this disadvantage of conventional KGMP is mainly due
to the redundancy between the basis vectors that are added simulta-
neously by optimizing Eq. (3). In the multiclass experiments, the
orthogonal KGMP outperformed the one-vs-rest support vector ma-
chines even though the same number of basis vectors were used. We
considered this to be due to the advantage gained by direct multiclass
formulation. Since the proposed method is based on the general gra-
dient ascent-based formulation, we can directly apply the proposed
method to various problems including multiclass problems.

We carried out benchmark tests to evaluate the computational
time required by the proposed method. We prepared a naive im-
plementation of kernel-log-linear models that uses all the training
vectors as basis vectors for comparison. In the experiments, we per-
formed the abovementioned binary classification task, and measured
the computational time by varying the number of training samples.
The basis expansion process in the proposed methods was iterated
until the value of the objective function of the proposed method ex-
ceeded 95 percent of that of the naive method. Figure 1 shows av-
erage computational time (5 trials for each setting) as a function of
the number of training data. We confirmed that the training time of
the proposed method was almost linear with respect to the number of
training samples although that of the naive implementation increased
quadratically.
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Fig. 1. Average training time as a function of the number of training
samples (the left figure is a magnified view of the right figure).



Table 2. Phoneme error rates (PERs) of phoneme recognition.
Method # basis # dim. of φ PER
GMM (MMIE, Full cov.) [11] – – 30.7
Linear 430 430 37.1
Second-order polynomial 750 101,475 27.9
Third-order polynomial 736 1,528,890 30.1
Gaussian 2560 ∞ 35.8

4.2. Speech applications
Following the first objective, to confirm the performance in terms
of flexible usage, we performed phoneme recognition experiments
based on HMMs. The HMMs we used is defined by substituting
the emission pdf p(xt|qt) in the conventional HMM-based acoustic
models for ASR, as p(xt|qt) ∝ P (qt|xt)/P (qt), where P (qt|xt)
was modeled by using the kernel-log-linear models, and P (qt) is the
distribution of the HMM state, which was assumed to be a uniform
distribution. P (l) and P (q|l) were estimated by using the maximum
likelihood procedure. The kernel-log-linear models P (qt|xt) were
estimated using the MAP criterion (Eq. (5)).

We used the TIMIT dataset for the experiments. The dataset
consists of 3,696 utterances (1,124,823 frames) for training, 1,144
utterances (350,343 frames) for validation, and 192 utterances
(57,919 frames) for testing. All the speech signals were first
converted into sequences of 39-dimensional MFCC-based feature
vectors (as in [11]); and then all the vectors were augmented by
concatenating the preceding and subsequent 5 frames to construct
429-dimensional observation vectors. As described in [12], we used
48 phonetic classes for training and decoding, and we calculated
the phoneme error rates by using 39 broader phonetic categories.
The scale factor for the language model, the number of iterations,
and the regularization constant c were tuned by using the validation
dataset. In general, the estimation of model parameters of speech
recognition involves unsupervised training; i.e. we can observe l,
but not q. However, in the experiments, we used state sequences
obtained by using a conventional HMM-based system for the sake
of simplicity. We emphasize that the proposed method can also be
employed for such unsupervised training since its training procedure
satisfies the introduced assumption (Eq. (1)).

Table 2 shows the phoneme error rates (PERs) of the compared
methods. We confirmed that using the standard log-linear models
results in poor performance when compared with the conventional
HMM-based approach with Gaussian mixture model (GMM)-type
emission pdfs. This is mainly because of the nonlinearity in the ob-
servation vectors. However, by introducing kernels, we confirmed
that the proposed approach outperformed conventional HMMs, even
though latent variables were not considered in the emission pdfs.
The use of third-order polynomial kernels and Gaussian kernels was
not so effective in the experiments. The ineffectiveness of third-
order polynomial kernels might be due to overfitting. The ineffec-
tiveness of the Gaussian kernels might be due to nuisance informa-
tion in the observation vectors caused by preceding and subsequent
frames. However, the performance of second-order kernels is sat-
isfactory, especially if we focus on the number of parameters. The
number of parameters in the second-order system is 429,894, which
is comparable to that of the baseline HMM systems; however, the
performance improvement is significant. This advantage might be
attributed to the efficiency of the proposed method that successfully
identified an efficient subspace of the feature space.

We conducted the preliminary experiments to verify an appli-
cability of the proposed method to a large scale task. In the experi-
ments, the kernel-log-linear models were trained with the WSJ SI284
dataset to classify the corresponding HMM states (2656 classes)

Table 3. Computational time on the WSJ corpus (107.4 samples).
# basis # dim. Obj. func. Train.

Kernel vectors of φ / # frame time
linear 143 143 -3.23 4 h 17 m
second 286 10440 -2.82 19 h 19 m

from the given observation vectors. The observation vector we used
is 12-MFCCs with log-energies spliced with 11 frames (143 dims.).
The optimization is stopped when the % change in the objective
function is less than 0.1. We used the second-order polynomial
kernel for the experiments; therefore the dimensionality of the fea-
ture vector φ(.) is 10440. The hyper-parameters are set at M init =
78, R = 13 and c = 0.0. Table 3 shows the results of the optimiza-
tion. We realized the kernel-based optimization over 74 h (107.4

samples) dataset in practical computational time. These results ex-
ceed scales of the state-of-the-art applications of kernel methods. We
confirmed that the proposed method is also available for such a large
scale task.

5. CONCLUSION
Aiming at the flexible use of kernel methods in various models and
with various optimization criteria, we proposed an orthogonal ker-
nel gradient matching pursuit method. The proposed method in-
creases dimensionality by appending basis vectors that approximate
a high-dimensional gradient vector obtained during model training
optimization. To minimize redundancy in the obtained basis set, we
introduced orthogonalization into the gradient vector to be approx-
imated. We evaluated the proposed method by carrying out hand-
written digit classification experiments and HMM-based continu-
ous phoneme recognition experiments. We confirmed that the pro-
posed method enabled the efficient realization of kernel approaches
in terms of both computational efficiency and modeling accuracy.
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