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ABSTRACT

The efficiency of multistream speech recognizers is investigated by
performing several experiments. In order to take advantage of mul-
tistream features, each stream should compensate the weakness of
the other streams. Our objective is to utilize frequency modulation
(FM) which can compensate errors from traditional analysis meth-
ods. In order to achieve informational independence from other fea-
tures based on the spectral/time envelope of signals, our features do
not contain amplitude information, but contain temporal structure in-
formation of frequency modulation. Our method is evaluated by the
continuous digit recognition of noisy speech. We confirmed that our
AM-FM combination method is efficient for noisy speech recogni-
tion.

Index Terms— Speech recognition, feature extraction, multistream

features, temporal analysis, frequency modulation

1. INTRODUCTION

The efficiency of multistream speech recognizers is investigated by
performing several experiments [1]. In order to take advantages of
multistream features, each stream should compensate the weakness
of the other streams.

Most of the speech recognizers use the features derived by a
spectral envelope as the primary cue for speech recognition. A fam-
ily of alternative features that can compensate the weakness of spec-
tral envelope derived from amplitude modulation (AM) are also uti-
lized in many speech recognizers [2, 3]. In this paper, we introduce
features derived from frequency modulation (FM); these features can
compensate errors from AM analysis.

Features based on FM of speech have been investigated by em-
ploying several methods. For example, Wang et al. employed the
average instantaneous frequencies of signals [4]. Paliwal et al. pro-
posed a method based on spectral centroids that depends on FM of
signals [5]. Dimitriadis e al. employed the average of instantaneous
frequencies weighted by amplitudes [6]. However, all the previous
methods for employing FM are based on stochastic quantities such
as the average frequency and the modulation percentage of temporal
segments. These methods eliminate the temporal structures in an in-
stantaneous frequency. In order to use the temporal structures of the
instantaneous frequency, we propose a more straightforward feature
extraction method.

The possibility of using FM for speech recognition is also con-
firmed by the listening experiments performed by Yoshida et al. [7].
In these experiments, it is confirmed that the reconstructed signal
that preserves the zero-crossing points of narrowband waveforms
are perceivable through human speech recognition. Although most
of the previous FM methods also use an amplitude factor in order
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to improve the performance [4-6, 8], the results of human speech
recognition experiments indicate that the human speech recognizer
can recognize speech only by using FM.

Our studies are motivated by this result. We consider that FM
can be a cue for speech recognition by itself. The FM features de-
rived without amplitude factor are considered independent of AM.
Thus, the properties of the features are quite different from those of
traditional features and are appropriate for multistream speech rec-
ognizers.

In this paper, in section 2, we first introduce our feature extrac-
tion frontend. The experimental setup is presented in section 3, and
the results are discussed in section 4.

2. THE COMBINATION MODEL OF AM AND FM (AFMC)

Fig. 1 depicts a brief overview of our method, the AM-FM combi-
nation (AFMC).

Input signals are classified under monophones frame by frame
by an AM classifier and an FM classifier. Subsequently, evidence
obtained by both the classifiers are merged by an evidence merger
component. Finally, the speech recognition results are determined
by decoding the sequence of the merged evidence.

2.1. AM Classifier (HATS)

We employ the HATS method introduced by Chen et al. as an AM
classification method [3]. This method can capture the amplitude
modulation of speech signals efficiently.

In this section, we describe the HATS method.

2.1.1. AM Emphasis Using MLP-OL

Fig. 2 shows the block diagram of a HATS classifier.
First, input signals are separated by a Bark filterbank [9]. Sub-
sequently, the output of the filterbank is processed by MLP-OL!.
MLP-OLs are used to extract the significant modulation com-
ponents from an envelope. MLP-OL is the general MLP classifier
during the training phase (Fig. 3).

The input signal xz; of the i neuron in the input layer of the
MLP-OL at the n'P! frame is defined by
r, = I (n+lf%) (1)

Here, L is the number of dimensions of the input vector (must be
odd) and Ej(n) is the energy of the output of the bt channel of the

'MLP-OL stands for MLP minus output layer
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filterbank at time n. Typically, the frame rate of Ej is set to 100 Hz,
and L is set to 51.

As is typical for the MLPs trained to estimate the posterior prob-
abilities, all the MLPs are trained using the teaching signal, which is
“1.0” for the monophone associated with the central frame and “0”
for all the others. We use the standard error back-propagation algo-
rithm to optimize the weights of connections between layers so that
the mean squared error is minimized.

During the application phase, the output layer of the MLP is
removed. Because the input vector x; can be interpreted as the time-
series signal, the output of hidden neurons can be interpreted as the
convolution of x and the weights between input neurons and the hid-
den neuron with a nonlinear sigmoid function. Therefore, the output
of hidden neurons has a fixed frequency response that can improve
the distinguishability of x. The filter constructed using the above
procedure is called a “matched filter.”

2.1.2. Tandem Approach for Acoustic Modeling

To recognize the output of matched filters, the HMM/MLP tandem
approach is used in HATS [1]. In this approach, the input feature
vector is classified under monophones by an MLP.

The MLPs in the tandem approach are also trained to estimate
the posterior probabilities of the associated monophones; the teach-
ing signal for training is “1.0” for the monophone associated with
the central frame and “0” for all the others.

2.2. FM Classifier

In order to apply the advantages of HATS, which can find a matched
modulation component from the training data, we apply the HATS
method to an FM signal.

Fig. 4 shows the block diagram of an FM classifier.

2.2.1. FM Extraction

Several methods are proposed for AM-FM decomposition, such as
the Teager energy operator (TEO) method [10] and the method based
on the Hilbert transform [11]. Since our first motivation is based
on the human perception of the zero-crossing points of signals, we
define FM of speech signals by employing the zero-crossing points
of the signals.

The logarithmic pseudo-instantaneous frequency (LPIF) is ob-
tained by performing the following steps:
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Fig. 1. Brief overview of proposed method.

1. Measure the time interval D(n) between the preceding and
the following zero-crossing points for each sample.

2. The LPIF (P(n)) at time n is defined by log(w/D(n)).

LPIFs can be considered as variants of the zero-crossings with
peak amplitude (ZCPA) features [8] in which amplitude weighting
is omitted. Amplitude weighting can improve the distinguishability
of features. However, weighting makes features dependent on AM
information. As our objective is to compensate the weakness of AM
features, informational independence is important.

We take the average of the LPIF signal for each 25 ms window
and then slide the window by 10 ms in order to achieve an equiva-
lence between the frame rate of FM and AM features.

2.2.2. FM Emphasis

First, the input signal are separated by a Bark filterbank , which
is used in the AM classifier. Because successive processes require
time-domain signals, filters are implemented using FIR filters.
Subsequently, LPIF extraction is performed at each channel out-
put in the filterbank.
The input signal z; of the i neuron in the input layer of the

MLP-OL at the n'P! frame is defined by

Pb(nﬂ'—%). @

h

Z; =

Similar to the AM classifier, we employ an MLP to classify the
outputs of FM-matched filters under monophones.

2.3. Evidence Merger

Now, we have observed two streams of the MLP evidence. We
merge them before using them as features of Gaussian mixture hid-
den Markov models.

We use the entropy-based combination of tandem acoustic mod-
els, which was introduced by Ikbal e al. [12].

First, we calculate the approximate posterior probability for the

m™ MLP p(c|x™) with the expression

(exp(=yi(e) — 1"
ZdeC(eXp(_yﬁd)) -t

th

p(clz™) A3)

Here, ™ is the input vector of the m™ MLP; y™, the output

vector of the mth MLP; C, the set of target classes (in this study, C'
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Fig. 2. Block diagram of HATS.



is the set of monophones); and i(c), the mapping from the elements
of C' to the dimension index of y™. This equation implies the can-
cellation of the sigmoid function and the application of the soft-max
transfer function to the output of the MLP.

In concrete terms, x" is the AM feature vector; 22, the FM fea-
ture vector; y', the output of the AM classifier; and ¢, the output of
the FM classifier.

The conditional entropy of ™ is estimated as

> —plcle™)log p(clz™). )

ceC

H™(Cla™) =

The weights of y™ are determined by taking the inverse of the
conditional entropy h"™:
m H™(Clz™)} !
o = O )
2= I (Cla)}
where M is the number of MLPs (in this study, M is 2).
Finally, we obtain the merged output ¢ from the expression

M
gi = > w"log(y"). ©6)
m=1

Because the dimensions of g correlate with each other, g is in-
compatible with the diagonal GMMs. It is necessary to transform ¢
for dimensionality reduction and decorrelation. For this, we use the
Karhunen-Loeve transformation (KLT).

3. EXPERIMENTS

In this section, we evaluate the performance of the AFMC by per-
forming experiments. We conducted the continuous digit recogni-
tion of noisy speech in this experiment.

The training set and test set are taken from CENSREC-1 [13],
which is the Japanese translation of the AURORA-2 data set. The
training set used for both the MLP and HMM comprises 8,440 ut-
terances of clean speech from 110 speakers. We select four noise
environments from CENSREC-1 (restaurant, street, station, and air-
port) for the test. The test set comprises by 1,001 utterances for each
noise environment and each signal-noise-ratio (SNR) condition.

The baseline comprises the MFCC and energy feature extraction
system with cepstral mean normalization and it is augmented by the

derivation and acceleration of the MFCC and energy. (MFCC_E_D_A_Z;

39 dims.)

The sample rate of speech signals in the experiments is fixed to
16,000 Hz. Therefore, the Bark filterbank splits them into 14 filtered
signals.

Training phase Application phase
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Fig. 3. Diagram of MLP-OL.

All MLP-OLs are constructed with 20 hidden neurons, which
means that we extract 20 modulation components for each filtered
signals. Therefore, the number of features for MLP is the product of
the number of bands (14) and 20. The number of hidden neurons for
MLPs is fixed to 200.

We compare several methods, as described below.

e AIF
This is a recognizer based on AIF features that are defined by
removing the ALE features from the AIF/ALE [4]. (augmented
by its derivations and accelerations; 42 dims.) AIF features are
calculated by the DCT decorrelation of the segmental mean of
the instantaneous frequency of narrowband signals.

e AM (HATS)
A recognizer based on AM features is constructed by removing
the FM classifier from the AFMC. This method is equivalent to
HATS. The number of features is 280.

e FM
A recognizer based on FM features is constructed by removing
the AM classifier from the AFMC. The number of features is
280.

e AFMC
This is the proposed method. The input feature vector size for
each MLP is 280. The total number of input features is 560.

4. DISCUSSIONS

From Fig. 5, it is observed that the proposed AM-FM system ex-
hibits considerable improvement as compared to other methods. In
comparison with the MFCC feature extraction system proposed com-
bination method reduced 43.6% of the word error at an SNR of 10
dB.

Although information on energy or amplitude is not included
in the FM features, these features have achieved sufficient perfor-
mance. It is considered that the temporal structures of LPIF con-
tain phonetic information, although the information does not explic-
itly contains spectral/temporal envelope information. In comparison
with AIF, our FM method exhibits considerable improvement. The
effectiveness of the method, which captures the temporal structures
of FM by using MLP-OLs, is confirmed by the experiment.

The results shows the indisputable fact that spectral envelope
(MFCC) and time envelope (AM) are important for speech discrim-
ination. However, the results also indicate that the FM of speech
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Fig. 4. Block diagram of FM classifier.



Table 1. Average weights allocated on AM and FM classifiers and
error reduction rate of AFMC comparing with AM.

Err.

AM weight FM weight | Reduction

(%) (%) Rate (%)

Clean 81.35 18.65 35.4
Restaurant (10 dB) 76.31 23.69 10.3
Street (10 dB) 61.76 38.24 26.9
Station (10 dB) 50.26 49.74 17.7
Airport (10 dB) 55.85 44.15 23.5

contains phonetic information and it can complement the AM fea-
tures.

The relation between the allocated weights and the error reduc-
tion rate compared with AM is depicted in table 1. The table shows
that noisy conditions damage the entropy of AM streams. Therefore,
the relative availability of FM streams is increased. However, it ap-
pear that there is no linkage between the FM weight and the error
reduction induced by the FM classifier. Although the combination
method achieves higher accuracy, the weighting method based on
inverse entropy might not be the optimal combination method.

5. CONCLUSIONS

In this paper, we introduced our novel feature extraction frontend
(AFMC) that consists of an AM classifier, FM classifier, and evi-
dence merger. Because the FM classifier can compensate the errors
arising from the AM classifier, a combination of these classifiers is
efficient for speech recognition.

We evaluated the proposed system by conducting the noisy digit
recognition task. Our method reduced 43.6% of the word error at
an SNR of 10 dB. The results show that our FM analysis method
outperforms the FM analysis method employed in the previous AM-
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Fig. 5. Word error rate for noisy speech as a function of SNR.

FM method. Therefore, it is confirmed that the time structures of
FM are important for speech recognition.

Finally, we confirmed that the FM of speech can complement
AM features.
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