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Abstract

Automatic speech recognition (ASR), which converts recorded speech signals into word se-
quences, is one of the most promising technologies for human-machine interaction and media
understanding. Recent advances in computer technology have enabled various improvements
in speech recognition technologies. Furthermore, the latest developments in machine learn-
ing theories and signal processing technologies have also supported the realization of accurate
speech recognizers. Although these efforts can realize accurate speech recognition in some
cases, further improvement in speech recognition technologies is still necessary to enable
more diverse applications.

In conventional ASR technologies, “succinct” representations of speech signals are dis-
criminated by using continuous density hidden Markov models (CD-HMMs). Typically,
Mel-frequency cepstral coefficients (MFCCs) and their time-derivatives are used as represen-
tations of speech signals. Although the use of this technology has enabled accurate speech
recognition, the accuracy of ASR is far from that of human speech recognition.

Because the design of succinct features that are robust against all environmental conditions
is difficult, multiple feature extraction modules are often combined. However, the use of
combination leads to an increase in the dimensionality of features, which might cause the
“curse of dimensionality” problem that degrades the robustness of statistical models. Thus,
the use of the multistream approach involves a tradeoff; that is, the increase in the number
of combined feature extractions improves robustness in the feature extraction modules, but it
degrades the robustness in the statistical models used in ASR.

This thesis tackles the problem arising from such a tradeoff by using regularized discrim-
inative models that effectively handle high-dimensional features. Three elemental technolo-
gies are proposed and discussed with the aim of realizing regularized discrimination of high-
dimensional signal representations.

This thesis consists of six chapters.
Chapter 1 discusses the current status of speech recognition research and describes the

approach used in this thesis. The overview of the thesis is then presented.
Chapter 2 describes conventional feature extraction methods and acoustic models. Fur-

thermore, emerging technologies related to the methods proposed in this thesis are also de-
scribed.
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Chapter 3 proposes a novel feature set based on frequency modulation (FM) of speech
with the aim of constructing high-dimensional features. To satisfy the complementarity of
feature extraction modules, this chapter focuses on the FM of speech signals. Because most
conventional feature extraction methods are based on the spectral envelope and/or amplitude
modulation (AM) of the speech signal, the use of FM is reasonable for the complementar-
ity. Conventional studies on FM features use information from FM as supplementary in-
formation for conventional features. However, human speech recognition experiments have
confirmed that the FM of speech signals also contains phonetic information. Thus, by ex-
tracting phonetic information precisely, the FM of speech can be used as independent fea-
tures for ASR, and it should have complemental property with conventional features. To
extract phonetic information from FM, the proposed method applies the nonlinear discrim-
inant analysis method, which is based on multilayer perceptrons (MLPs), to instantaneous
frequency sequences. Further, the multiple feature composition method, which is based on
the HMM/MLP-tandem-based multistream method, was applied and evaluated in reverberant
and noisy environments. The proposed FM features ware confirmed to have a performance
comparable with conventional features, even if the FM features do not include spectral en-
velope information explicitly. Furthermore, combining the FM and AM features was also
confirmed to reduce the word errors by 21% when compared with conventional features, and
by 20% when compared with AM features used separately.

Chapter 4 proposes a method for constructing a regularized discriminative model based
on CD-HMMs. To realize ASR based on regularized discriminative models, this chapter fo-
cused on regularized discriminative training of acoustic models. Discriminative training is a
family of parameter estimation methods that is known to be effective for constructing highly
accurate classifiers. In general, discriminative training can be easily corrupted by an over-
fitting problem when the training dataset is not sufficient. In contrast, Bayesian inference is
known to be a robust method that achieves steady performance even if the training dataset is
limited by considering parameters as random variables. Minimum relative entropy discrimi-
nation (MRED), also known as maximum entropy discrimination (MED), has been proposed
in machine learning research communities with the aim of introducing the randomness of
parameters into discriminative training methods, similar to that achieved in the Bayesian in-
ference method. In this chapter, the MRED method is applied to the discriminative training
of CD-HMMs. Conventionally, MRED is not applied to training of sequence classifiers with
sequence labels (e.g. CD-HMMs). This thesis extends the MRED framework to construct a
training algorithm of CD-HMMs. The effectiveness of the proposed method was confirmed
by conducting continuous phoneme recognition experiments. The proposed method could
reduce the phoneme errors by 6.4% when compared to maximum likelihood training, and by
2.1% when compared to conventional discriminative training.

Chapter 5 proposes a model-based feature augmentation method based on kernel meth-
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ods. In conventional HMMs, Gaussian mixture models (GMMs) are used to model each
sample in feature vector sequences. Furthermore, the nonlinear classification of each sample
is realized by using GMM with a large number of mixture components. However, because
the estimation processes of mixture models involve local optima in their optimization perfor-
mance function, the training of CD-HMMs with a large number of mixture components is
easily corrupted by local optima. Further, in general, mixture models often induce overfit-
ting, especially with discriminative training. In contrast, several classification methods, e.g.,
support vector machines, use kernel methods to realize nonlinear classification of each input
sample. To prevent these problems in GMMs, kernel methods are used to enhance emission
probability density functions in CD-HMMs; these methods are described in this chapter. To
apply the kernel methods, training and evaluation procedures for the models must be repre-
sented as the weighted sum of the inner products for each sample in the training dataset. In
this chapter, the training and evaluation procedures of the proposed method are rewritten as
the weighted sum of the inner products by using pseudo log-linear models and the MRED
training method described in the previous chapter. Isolated phoneme recognition experiments
were performed to evaluate the proposed methods. These experiments confirmed that the pro-
posed methods could reduce the classification errors by 10.8% when compared to maximum
likelihood classifiers, and by 5.8% when compared to discriminatively trained classifiers.

Chapter 6 summarizes the results achieved in this thesis and provides perspectives for
future extensions.
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Abstract in Japanese

近年の計算資源の増大，および音声信号処理技術や統計的機械学習理論の進歩に伴ない，
自動音声認識の精度は飛躍的な向上を遂げてきている．しかし，多様な環境における様々
な話者の発話を人間と同等の精度で認識する水準には至っていない．音声認識器は音声信
号から音声特徴を分析する特徴分析器，単語毎の音声特徴生起確率を与える音響モデル，
単語列の生起確率を与える言語モデルを用いて，最適な単語列を探し出す統計的推定問題
の一つとして定式化されている．この枠組みの上では音響パターンの多様性は原則的に特
徴分析器および音響モデルによって吸収しなければならない．そのため，特徴分析器およ
び音響モデルの高精度化は重要な課題である．
従来の音声認識器は，音声信号から音韻情報を充分に示すと考えられる低次元の特徴ベ

クトル列を抽出し，それを隠れマルコフモデル (Hidden Markov Model; HMM)を用いて
モデル化することで識別器を構成してきた．しかし，現状の特徴分析法では環境の変化等
に頑健であるとは言い難い．また，適切な特徴分析法は環境に応じて変化することが様々
な実験によって確認されている．そのため，特徴分析法の多重化は多様な話者／環境に対
応するためには必須の手法であると考えられる．これらの手法はマルチストリーム法と呼
ばれ音声認識の高精度化のために有効な手法として注目を集めている．しかし同時に，単
純な多重化ではモデル化対象のベクトルが高次元化するため，「次元の呪い」と呼ばれる
統計モデル上の問題が発生することが指摘されている．つまり，現状の音声認識は，特徴
分析法の頑健性を確保するために多重化を行なうと，次元の呪いによって識別器の頑健性
が低下してしまうというトレードオフを内在しているということができる．従来のマルチ
ストリーム法では直接これを解決することを避け，多重化のレベルを下げることで問題に
対応してきた．
そこで本論文では，多様かつ高次元の音声特徴量を過学習に強い正則化識別モデルとの

組合せの中で利用する枠組みを提案する．従来，過学習に強いモデルに関する検討や多様
な音声特徴量を用いる検討は個別の問題として取り扱われてきたが，自然言語処理におけ
る機械学習の分野等ではこの両者を同時に検討することで大きな成果を上げている．以上
を踏まえ，本論文ではこの「高次元音声特徴の正則化識別モデルを用いた音声認識器」の
構築に必要な技術について論じる．
本論文は全 6章から構成される．
第 1章では，本論文の背景と目的について述べ，論文全体の構成を示す．
第 2 章では，既存の音声認識器について詳説する．最初に統計的アプローチに基づい
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た音声認識問題の定式化について解説する．次に現在広く用いられているMel-Frequency
Cepstral Coefficients (MFCC)特徴分析法，およびそのモデルとしての HMMとその最尤
推定について，解説と考察を行なう．続けて，本論文に関連の深い最新の研究についての
解説を行なう．
第 3章では，高次元音声特徴をどのように定義したら良いかについての検討を行ない，

新しい特徴分析法の提案を行なう．MFCC法に代表される従来の音声特徴量分析手法は，
音声認識がソースフィルタモデルにおけるフィルタ推定の問題であるという解釈から，よ
り音声認識に適した対数スペクトル包絡を求める問題として検討されてきた．しかし，聴
覚的には対数スペクトル包絡以外の情報によっても，音声の知覚がなされていると考えら
れている．本論文では従来手法との相補性を考え，対数スペクトル包絡にはあらわれにく
い特徴である周波数変調を用いる手法を提案する．従来より周波数変調を対数スペクトル
の補助情報として用い，音声認識を行なうことで対雑音性能を向上させる検討があった
が，それらは全て周波数変調を対数スペクトルの補助として利用するための手法であり，
単独では充分な効果を持たないものであった．しかし，人間の音声認識においては，対数
スペクトルの情報を人工的に失わせた周波数変調正弦波の混合であっても音韻性を知覚で
きることが聴覚実験によって確認されている．そのため，周波数変調情報のみによって自
動音声認識を行なうことも可能であることが考えられる．さらに，このような従来法との
相補性の高い特徴分析法を従来法と多重化させることにより，さらに高精度な認識が可能
であることも考えられる．そこで本論文では，瞬時周波数のゆるやかな時間変化に着目
し，瞬時周波数系列から識別に有意な変調成分を強調することで特徴量を得た．提案した
分析法は既存の周波数変調分析法と比べ 21%の単語誤りを削減することができることを
確認した．また，提案した周波数変調分析法を組み合わせることで既存の音声認識器から
20% のエラーを削減することができることを確認した．これにより適切な高次元特徴を
定義すれば音声認識の精度を向上させることができることを確認した．
第 4章では，高次元特徴での利用を見据え過学習をしにくい音響モデルの構築法，特に

既存の音声認識器において高い性能を達成している識別学習法について論じる．識別学習
法は識別的な基準の最適化によって音響モデルパラメタを推定する方法の総称であり，充
分なデータが与えられた上では良い性能を示すことが知られている．しかし，これらの推
定法は過学習が起こりやすいことが知られており，これら学習法の利用にはタスクの複雑
さに対して最尤推定法よりさらに多くのデータが必要なことが知られている．さらに，高
次元特徴の利用も過学習を起こしやすいため，高次元特徴と識別学習の併用は難しい．他
方では，過学習が起こりにくい手法として，ベイズ推論に基づく学習が知られている．ベ
イズ推論はパラメタの値を推定するのではなく，パラメタの分布を推論する枠組みである
ため，パラメタ推定量のばらつきを適切にモデル化することができ，過学習を緩和できる
と言われている．最小相対エントロピー識別は，ベイズ推論と同様のパラメタ分布表現を
識別学習に持ち込むことを目的として，機械学習の分野で提案された手法である．本章で
は高次元特徴量の識別モデルとして，この手法を用いることを考える．従来，最小相対エ
ントロピー識別は静的パターンの識別に用いられてきたが，本章ではこれを時系列パター
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ン認識，すなわち教師データが離散変数の系列で表現され，入力が実数値ベクトルの系列
で表現されるような識別問題を解くことができるように再定式化を行なった．また，提案
法が既存の識別学習法を包含する更新則を持ち，事前分布として特殊な分布形を用いた時
のみ既存法に一致するという性質を発見した．事前分布の導入は定式化上，最適化問題へ
の正則化項の導入と同義であると見なすことができ，提案法は正則化識別モデルを音声認
識の音響モデルとして導入したことに相当する．正則化項の導入は高次元入力に起因する
過学習を軽減する効果のある手法として静的パターン認識の分野では良く知られているこ
とから，音声認識においても過学習の低減という点で効果が期待できる．音素認識実験で
提案法の評価を行なったところ，最尤推定と比べ 6.4%，既存の識別学習法と比べ 2.1%の
音素誤りを削減することができた．これらの実験を通し正則化識別モデルの有効性を確認
した．
第 5 章では，高次元特徴と正則化識別を組み合わせた手法を提案する．音声認識で用

いられている HMM では，混合ガウス分布を出力分布として利用することで，非線形の
識別を取り扱っている．混合ガウス分布は各種推定で用いられている最適化関数に関して
局所解を持つ分布であり，局所解に収束してしまう可能性が高い．また，混合ガウス分布
は過学習が起こりやすいことが知られており，特に識別学習を行なった際の過学習が性能
に大きく影響を及ぼすことが経験的に知られている．一方，サポートベクタマシンに代表
される線形識別関数法に基づく手法では，非線形の識別を実現するため，特徴量を再生核
ヒルベルト空間と呼ばれる高次元空間に写像し，その空間で線形識別を行なうことが提案
されている．この場合，線形モデルが用いられるため局所解は存在せず，また過学習も起
こりにくいと言われている．本章では，このカーネル法に基づく高次元空間への写像およ
びその空間内での線形の識別を HMM の枠組みの上で実現するために，HMM の出力分
布をカーネル法に基づいて拡張することを提案する．カーネル法導入のためには，モデル
の学習および評価が全てトレーニングデータに含まれるサンプルの内積に対する線形関数
で表現されなければならない．本論文では，HMMの出力分布を非正規化対数線形分布と
することで，認識時に用いられるスコアをパラメタに対し線形の関数で表現できるように
した．また，そのようにして定義したモデルを第 4 章で導入した手法で学習させること
により，各サンプル点の内積の線形関数として表現される目的関数を得た．提案法は音素
識別問題にて，最尤推定の HMMと比べて 10.8%の音素誤りを，最大相互情報量推定の
HMMと比べて 5.8%の音素誤りを削減することに成功した．またこの結果は第 4章で導
入した学習法が次元の呪いを回避できていることを示しており，高次元特徴の正則化識別
の効果を示していると考えられる．
第 6章では，本論文を総括し結論を導く．また，今後の展望について述べる．
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Mathematical notations
In this thesis, lower-case bold letters denote vectors (e.g. x). All vectors are considered as
column vectors (N(x)×1 matrices where N(x) is dimensionalities of vectors), and T denotes
the transpose operator. Therefore, inner-products of two vectors (x and y) are denoted by
xTy. The nth element in a vector x is denoted by subscript as xn. All matrices are denoted
by upper-case bold letter (e.g. A). I denotes the identity matrix.

Sequences of D-dimensional vectors are considered as T × D matrices, where T is the
number of elements in the sequence. For example, the dth dimension of the nth element in
the N -elements sequence of D-dimensional vectors (X = {x1, · · · , xN}) can be denoted as
xt,d = {xt}d. Correspondingly, scalar sequences are considered as vectors (T × 1 matrices),
and therefore denoted by lower-case bold letters. The nth element in a sequence l is denoted
by ln.

A variable denoted by a lower case latin alphabet with subscripts is considered as an ele-
ment in the corresponding matrix and/or vector denoted by the same alphabet with bold letter.
For example, a matrix denoted by A contains column vectors denoted by ai and scalars de-
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noted by aj,i, as follows:

A
def= [a1, · · · , ai, · · · ]

def=


a1,1 · · · a1,i · · ·

...
...

aj,1 · · · aj,i · · ·
...

...

 ,

x
def= [x1, · · · , xd, · · · ]T .

(1)

While detailed meanings of variables are different, the variables with the roughly same
meaning are notated by the same letter. In this thesis, such variables are distinguished by
superscripts. For example, feature sequences are denoted by the same letter X inspite of the
difference in their extraction methods. In order to prevent this ambiguity, superscripts are
used to distinguish the feature sequences extracted by different methods. Specifically, XFM

denotes an FM feature vector sequence, and XAM denotes an AM feature vector sequence in
Chapter 3.

In order to respect the above notation system, some conventional rules practiced in signal
processing textbooks are not compatible with this thesis.
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Chapter 1

Introduction

Automatic speech recognition (ASR), which converts recorded speech signals into word se-
quences, is one of the most promising technologies for human-machine interaction and media
understanding. However, it is currently difficult to perform ASR accurately since speech sig-
nals include a wide variety due to several factors such as recording environments, speakers,
and/or speaking styles. Thus, the speech recognition is now considered as one of the most
difficult problems in pattern recognition research.

Recent advances in computer technology have enabled various improvements in ASR
technologies. For instance, in [McDermott et al., , Woodland, 2002, Lööf et al., 2007], the
complex probabilistic models, which involve over 20,000 Gaussian probability density func-
tions (pdfs), are trained by the large datasets, such as Corpus of Spontaneous Japanese (CSJ)
[Maekawa, 2003], European parliament plenary sessions (EPPS), and SWITCHBOARD
[Godfrey et al., 1992]. Further, the latest developments of machine learning theories and
signal processing technologies also support the construction of accurate speech recognizers.
Although these efforts can realize accurate ASR in some particular cases, further improve-
ments in ASR technologies are still necessary to enable more diverse applications. The main
objective of this thesis is to provide methods aiming for construction of accurate speech
recognizers that can identify contents of speech signals by enhancing signal processing and
statistical estimation techniques used in speech recognition.

In this chapter, at first, the current scheme of speech recognition is briefly described. Then,
the conceptual framework underlying this thesis is described.

1.1 Automatic speech recognition
The ASR problem is formulated as a probabilistic decision problem, i.e., the relationship be-
tween speech signals and recognition results is defined by probabilistic distribution functions
(pdfs). In this formulation, the relevant word sequence l̂ is selected so as to maximize a
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probability of a label sequence l, given the speech sample sequence r, as follows:

l̂ = argmax
l

P (l|r). (1.1)

Here, since direct modeling of the speech sample sequence r is intractable, the conditional
probability is approximated by introducing a feature extraction function X = Φ(r) *1, as
follows:

l̂ ≈ argmax
l

P (l|X), (1.2)

where the feature vector sequence X is computed from the recorded speech signal r. By
using Bayes’ law, the above equation is expanded as follows:

l̂ ≈ argmax
l

P (l|X) = argmax
l

P (X|l)P (l)
P (X)

= argmax
l

P (X|l)P (l). (1.3)

In this formulation, four components are used to construct speech recognizers, as follows:

• Feature extractors that compute a feature vector sequence X = Φ(r) from a
recorded speech signal r,
• Acoustic models that are used to represent a emission probability of a feature vector

sequence X , given a label sequence l (P (X|l)),
• Language models that are used to represent a probability of a label sequence l (P (l)),

and
• Decoders that search the relevant word sequence l̂ that maximizes P (X|l̂)P (l̂).

Figure 1.1 shows the block diagram of speech recognizers.
The following subsections describe each component in the diagram. This chapter only

provides a conceptual overview of each component. The detailed discussions and literature
reviews about these components focused in this thesis are presented in the next chapter.

1.1.1 Feature extraction

The ultimate objective of feature extraction modules is to provide effective representations
of speech signals to acoustic models. Therefore, the studies on acoustic modeling and fea-
ture extraction are inseparable. However, in general, these two modules are independently
developed. Most conventional studies attempt to extract some physical quantities, which suc-
cinctly explain phenomena of speech production and transmission, since they are suitable for
use with conventional generative acoustic models.

*1 As mentioned in the page xvii, upper-case bold letters (e.g. X) are used to represent sequences of vectors.
Therefore, this equation implies that a vector sequence X is extracted from a scalar sequence r by using the
feature extraction function Φ.
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Since speech signals can be assumed to be stationary in a short-time segment, input signals
are often split into short-time segments termed “frame.” Conventionally, fixed-length (≈ 25
ms) segments are taken for each frame-shift length (≈ 10 ms). Thus, the nth element xn in
the feature vector sequence X is computed by using a framewise feature extraction function
Φn and a short-time segment {rt|∀t ∈ [T START

n ..T STOP
n ]}, as follows:

xn =Φn({rt|∀t ∈ [T START
n ..T STOP

n ]}) (1.4)

where T START
n and T STOP

n are the indices of the first sample and the last sample in the nth

frame, denoted as follows:

T START
n =nτ SHIFT

T STOP
n =T START

n + τ WINLEN − 1.
(1.5)

Here, τ SHIFT is the frame-shift length, and τ WINLEN is the number of samples in the window
(window length).

1.1.2 Acoustic models

Acoustic models are used to represent the pdf P (X|l), which represents the emission prob-
ability of the observed feature vector sequence X , given a label sequence l. One of the

Feature extraction

Generative models for sequence

Speech signal

Speech features

Word Sequence

Decoder

Acoustic models P(X|l)

Language models P(l)

"RECOGNITION RESULTS"

Figure 1.1 Schematic diagram of current speech recognizers
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difficulties in acoustic models is that both of the variable to be modeled X and the condition-
ing variable l are structural (sequential), which involve combinatorial explosion. Therefore,
multiple observations (Xs) are rarely obtained for the exactly same l.

A widely accepted solution is to use models that are defined with respect to each label ele-
ment ln where l = {l1, l2, · · · }. Practically, ln is designed to represent each word, phoneme,
or context-dependent phoneme (e.g. triphone) in the label sequence. The continuous-density
hidden Markov model (CD-HMM) is the most widely accepted model that use the abovemen-
tioned strategy. Since CD-HMMs have a concatenation operator, they can handle sequences
of labels by concatenating CD-HMMs corresponding to each label element in the given label
sequence.

1.1.3 Language models and decoders

Language models are used to represent probabilities of label sequences. In general, a word
N -gram model is used as a language model. N -gram models predict label element ln from
preceding N − 1 label elements For example, 3-gram models represent the probability of a
label sequence l as P (l) =

∏
n P (ln|ln−1, ln−2). In language models, typically, elements

ln are designed to represent each word. It should be noted that the inconsistency in types
of elements of label sequences used in the acoustic models and the language models can be
resolved since probability of a word sequence is translated into probability of a phoneme
sequence by decoders.

The decoders are one of the most important modules for computational efficiency of ASR.
In large vocabulary continuous speech recognition (LVCSR) problems, exact search over
hypothesis label sequences might be computationally prohibitive. Recent decoders enable
LVCSR by employing approximated search algorithms, such as beam search methods and/or
A* search methods. Although the use of these approximated search algorithms causes errors
due to approximation, called “search error,” recent advances in decoding algorithms satisfy
both of the computational efficiency and the recognition accuracy.

In this thesis, these modules are not mentioned because they are rarely related with acous-
tical fluctuations of the observed signals r. However, the methods proposed in this thesis
would cooperate with latest advances in language models and decoders.

1.2 High-dimensional speech representations
According to the above scheme, degradations due to the fluctuations in speech patterns should
appear in feature extractors and acoustic models. Therefore, sophisticated feature extractors
and acoustic models are required in order to achieve accurate ASR.

Conventionally, feature extractors are designed to extract succinct features that are con-
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sidered as containers of phonetic information. Further, the acoustic models are trained to
be a good generator of these succinct features. This scheme is effective when the extracted
features have sufficient information required for ASR. However, generally speaking, most
conventional feature extraction methods have pros and cons depend on situations. Thus, the
combination of conventional features is considered as effective. Multistream speech recog-
nizer is a generic term for speech recognizers that contain multiple feature extraction mod-
ules.

However, it is known that the use of multiple features leads to inefficiency called curse of
dimensionality, which is the set of phenomena that appears when high-dimensional vectors
are modeled by statistical models. The following undesirable effects are often observed in
such cases.

• Distances between two vectors independently sampled converge to a constant (a.k.a.
concentration of measure [Bishop, 2006]).
• Increase in the number of parameters in model pdfs results in increase in the bias term,

which indicates the sensitivity to the training data shortage.
• Computational resources required for model estimation and evaluation increase.

Despite these effects, the conventional multistream speech recognizers work accurately,
by using several techniques such as ensemble classification methods and hybrid classification
methods [Morgan et al., 2005]. This thesis attempts to directly resolve this inefficiency by
introducing regularized discrimination of high-dimensional signal representations.

1.3 Regularized discrimination of high-dimensional speech

representations
Recently, the importance of regularization in optimization of classifiers is confirmed in
several application areas. For example, in speech recognition, an I-smoothing technique
is introduced as a regularization technique in discriminative training of acoustic models
[Povey and Woodland, 2002].

One of the most successful methods with regularization is the support vector machine
(SVM). In SVMs, L2-norm regularization is introduced to parameter vectors in order to ob-
tain large margin linear classifiers [Boser et al., 1992]. Since SVMs achieved robust classifi-
cation even if input vectors are mapped to a higher-dimensional space, it is assumed that the
SVMs can prevent the curse of dimensionality.

Regularization is a technique that introduces additional terms in objective functions of op-
timization problems in order to prevent overfitting and reduce the generalization error. The
term “generalization error” indicates the expectation of the amount of errors over the true
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distribution of input examples. Obviously, since the true distribution of the input examples is
unknown in general, direct evaluation of generalization error is impossible. In several meth-
ods, empirical errors, which indicate the amount of errors with respect to the examples in
the given dataset, are minimized instead of generalization errors. However, although an em-
pirical risk minimization can easily be achieved by using complex models *2 (e.g. 1-nearest
neighbor classifiers can achieve zero empirical error), it is well known that most statistical
models involve trade-off between the empirical error minimization and generalization error
minimization as shown in Figure 1.2.

Regularization techniques are often introduced in order to adjust this trade-off. Especially,
regularization techniques are important in high-dimensional discrimination since a model
complexity is too high in several cases even if a naive model, such a linear model, is chosen.
Thus, regularization techniques are necessary in order to adjust trade-off between empirical
error and generalization error of high-dimensional models.

1.4 Contributions
The contributions of this thesis are aiming for realizing a scheme for ASR that can efficiently
cope with high-dimensional features obtained by multiple feature extraction methods and
feature augmentation methods.

For this purpose, regularized discrimination of high-dimensional speech features is intro-
duced for ASR. The efficiency of the scheme that combines high-dimensional features and
regularized discrimination is also confirmed in recent advances in natural language process-
ing. Because mechanism in generation of natural language texts are rarely known, multiple

E
rr
o
r

Model complexity

Generalization error

Empirical error

Inaccuracy in estimation

The optimal model

Overfitting

Underfitting

Figure 1.2 Trade-off between empirical risk minimization and generalization error minimization

*2 In this thesis, the term “complex model” denotes models with a number of parameters.
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and redundant features are used instead of succinct features extracted so as to avoid redun-
dancy. Although the mechanism of speech perceptions and productions have been deeply
investigated, the use of high-dimensional features would be efficient because these mecha-
nisms are still under investigation.

Specifically, this thesis focused the following topics in construction of speech recognizers.

1. Constructing of high-dimensional features,
2. Obtaining regularized discriminative models in order to prevent curse of dimensional-

ity, and
3. Transforming feature vectors in order to enrich representation of speech features.

1.5 Overview
The proposed scheme of speech recognition and the organization of this thesis is illustrated
in Figure 1.3.

This thesis is organized as follows:

Feature extraction

Regularized discriminative 

models for sequence

(Chapter 4)

Speech signal

Speech features

Word Sequence

Decoder

Acoustic models P(X|l)

Language models P(l)

"RECOGNITION RESULTS"

Feature extractionFeature extraction

(Chapter 3)

Feature augumentation

(Chapter 5)

Augumented features

Figure 1.3 The schematic diagram of proposed speech recognizers
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Chapter 2 describes conventional feature extraction methods and acoustic models. Fur-
thermore, emerging technologies related to the methods proposed in this thesis are also de-
scribed.

Chapter 3 proposes a novel feature set based on frequency modulation (FM) of speech
with the aim of constructing high-dimensional features. To satisfy the complementarity of
feature extraction modules, this chapter focuses on the FM of speech signals. Because most
conventional feature extraction methods are based on the spectral envelope and/or amplitude
modulation (AM) of the speech signal, the use of FM is reasonable for the complementarity.
To extract phonetic information from FM, the proposed method applies a nonlinear discrim-
inant analysis method, which is based on multilayer perceptrons (MLPs), to instantaneous
frequency sequences. Further, the multiple feature composition method, which is based on
the HMM/MLP-tandem-based multistream method, is applied and evaluated in noisy and
reverberant environments.

Chapter 4 proposes a method for constructing a regularized discriminative model based on
CD-HMMs. To realize ASR based on regularized discriminative models, this chapter focused
on regularized discriminative training of acoustic models. In this chapter, the author proposes
an application method of minimum relative entropy discrimination (MRED; a.k.a. maximum
entropy discrimination (MED)) for CD-HMMs. By considering the Bayesian inference as a
generalization of the maximum likelihood estimation, generalization for discriminative train-
ing methods of the CD-HMMs can be considered in a similar way. MRED is a way to
generalize discriminative models [Jaakkola et al., 2000, Jebara, 2001]. In this chapter, a gen-
eralized method of the conventional discriminative training methods is derived by applying
MRED to discriminative training of CD-HMMs.

Chapter 5 proposes a model-based feature augmentation method based on kernel methods.
By applying MRED for HMMs, a feature augmentation method based on kernel methods is
introduced to HMMs in a straightforward way. Hidden Markov kernel machines (HMKMs)
are proposed as an extension to conventional CD-HMMs in this chapter. Since the kernel
method project original feature vectors into a higher-dimensional space, the method proposed
in this chapter can be assumed as a combination of high-dimensional features and regularized
discriminative models.

Chapter 6 summarizes the results achieved in this thesis and provides perspectives for
future extensions. Further, final remarks are presented.
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Chapter 2

Background

In this chapter, conventional methods for feature extraction and acoustic model training are
described in Section 2.1 and Section 2.2, respectively. Each section begins with a descrip-
tion about the most widely accepted method, and then the state-of-the-art methods that are
closely related to the methods proposed in this thesis are described. Further, in Section 2.3,
hidden Markov models/ multi-layer perceptron (HMM/MLP)-tandem approach is described
as a conventional method used for handling high-dimensional features.

2.1 Feature extraction
Since raw signals are intractable in conventional acoustic models, a sequence of feature vec-
tors X

def= {x1, x2, · · · } are extracted from the raw signal r
def= {r1, r2, · · · }.

2.1.1 Mel-frequency cepstral coefficients (MFCC)

Most feature extraction methods stand on the source-filter model of speech production. In this
model, the speech recognition problems are considered as a blind filter estimation problem
of speech signals by assuming randomness of the source signal. Mel-frequency cepstral
coefficient (MFCC) feature extraction is one of the most widely accepted feature extraction
methods based on this assumption.

By considering the source-filter model of speech production, speech signals are assumed as
convolutions of source signals emanated from vocal cords and impulse responses of a vocal
tract. In general, filters are assumed to be quasi-stationary, i.e. an impulse response of the
filter is constant in a short-time segment. Thus, by applying the Wiener-Khinchin theorem
[Oppenheim et al., 1989], kth component of the short-time Fourier transform (STFT) of nth

frame (xSTFT
n,k ) is expressed as the product of the STFT of the source signal en,k and that of

the impulse response vn,k, as follows:

xSTFT
n,k =en,k · vn,k. (2.1)
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Taking logarithm of squared-magnitude yields:

log |xSTFT
n,k |2 =2 log |en,k|+ 2 log |vn,k|. (2.2)

This equation implies that shifts in the logarithmic power spectrum can be assumed as the
sum of shifts in frequency characteristics of the vocal tract and the source signal.

An extraction process of MFCCs attempts to suppress the variation due to the source sig-
nal. First, the MFCC extraction process applies high-pass filtering (pre-emphasis) as a pre-
processing in order to flatten spectrum of the signal xSTFT

n,k . Then, power spectrum components
|xSTFT

n,k |2 are processed by frequency domain windows wMEL
d = [wMEL

d,1 , wMEL
d,2 , · · · ] which simu-

late human hearing characteristics of sound pitch.

xMEL
n,d = log

{∑
k

wMEL
d,k |xSTFT

n,k |2
}

. (2.3)

As described in page xvii, xMEL
n,d is considered as the (n, d)th element of the matrix XMEL

and dth element of the vector xMEL
n . Note that xSTFT

n,k in this equation is obtained from pre-
emphasized signals. Central frequencies κMEL

d of the spectral windows wMEL
d,k are equally spaced

in Mel-frequency domain ΩMEL, and the slopes of the windows are linear, which are defined
as follows:

wMEL
d,k =


k−κMEL

d−1
κMEL

d −κMEL
d−1

κMEL
d−1 < k ≤ κMEL

d

κMEL
d+1−k

κMEL
d+1−κMEL

d
κMEL

d < k < κMEL
d+1

0 otherwise,

κMEL
d =

K

ωRATE
ΩIMEL

(
d (ΩMEL(ωSTOP)− ΩMEL(ωSTART))

D + 1
+ ΩMEL(ωSTART)

)
,

ΩMEL(ω) =2595 log10

(
1 +

ω

1400π

)
,

ΩIMEL(m) =1400π
(
10

m
2595 − 1

)
,

κMEL
0

def=
ωSTART

ωRATE
K,

κMEL
D+1

def=
ωSTART

ωRATE
K,

(2.4)

where ωSTART and ωSTOP are lower and upper frequency cutoff in angular frequency (rad/s),
respectively, ΩMEL(ω) is the frequency warping from angular frequency to the Mel-frequency,
ΩIMEL(ω) is the inverse frequency warping of ΩMEL(ω), ωRATE is the sampling rate in angular
frequency, D is the number of channels in Mel-filter bank, and K is the number of frequency
bin. Figure 2.1 shows wMEL

d,k as a function of k.
Generally speaking, the spectrum of the source en,k stay constant for all k when an un-

voiced sound is presented, and en,k has periodicity along the k-axis when a voiced sound
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is presented. Therefore, variation due to source signals of unvoiced sounds are suppressed
by subtracting the average of the xMEL

n,ks for all k, and that of voiced sounds are suppressed
by removing microscopic fluctuations in the xMEL

n,k along the k-axis. These operations, the
subtraction of the average and the microscopic fluctuations, can be performed by applying
a band-pass filter (BPF) to xMEL

n,k where k is considered as a time-domain variable. This log-
spectral domain filtering operation is termed “liftering.” The spectrum of log-spectrum is
termed “cepstrum”, and the frequency-axis of a cepstrum is termed “quefrency.”

By obtaining a cepstrum by using discrete cosine transform (DCT), the dth element of
MFCCs at nth frame is defined as follows:

xMFCC
n,d

def=
(
C · xMEL

n

)
d+dLOQUE (1 ≤ d ≤ dHIQUE − dLOQUE) (2.5)

where dLOQUE and dHIQUE are the lower cutoff quefrency and the upper cutoff quefrency of the
band-pass-liftering, C is the DCT matrix. Typically, dLOQUE and dHIQUE are set at 1 and 13,
respectively.

MFCCs are often used with an energy feature and their first/second-order derivatives
[Furui, 1981]. Typical feature vector xMFCC E D A

n is defined by augmenting the energy feature

Freqency bin [k]

d=7

d=8

d=9

d=10

d=11
d=12

d=13
d=14 d=15 d=16 d=17

Figure 2.1 Frequency characteristics of Mel-filterbank wMEL
d,k as a function of a frequency

bin k. (Sample rate = 16000 Hz, B = 20, upper cutoff frequency = 8000 Hz, lower cutoff
frequency = 0 Hz)
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and derivatives, as follows:

xMFCC E D A
n

def=
[(

xMFCC E
n

)T
,
(
∇nxMFCC E

n

)T
,
(
∇n∇nxMFCC E

n

)T]T
,

xMFCC E
n

def=
[(

xMFCC
n

)T
,
(
xE

n

)T]T
,

xE
n = log

{∑
k

|xSTFT
n,k |2

}
,

(2.6)

where ∇n is the partial derivative operator with respect to the variable n. Typically, the
derivatives are obtained by a numerical method, as follows:

∇nf(n) =
∑T

τ=1 f(n + τ)− f(n− τ)

2
∑T

τ=1 τ2
(2.7)

where T is the number of frames used to compute the derivatives, which is typically set at 1
or 2. A block diagram of an MFCC E D A extraction process is presented in Figure 2.2.

It should be noted that∇ is a linear convolution operator of sequence. A derivative operator
∇nxn,d of a feature xn,d can be expressed as the following convolution form:

∇nxn,d =
T∑

τ=−T

hDELTA
τ+T+1 + xn−τ,d,

hDELTA def=


{− 1

2 , 0, 1
2} (T = 1),

{− 2
10 ,− 1

10 , 0, 1
10 , 2

10} (T = 2),
...

(2.8)

where hDELTA
τ is the τ th element in the sequence hDELTA. Thus, the derivative operations are

equivalent to a time-domain filtering operation of feature trajectories. The frequency charac-
teristics of this filter depend on the time window length T . The next subsection focused on
filtering techniques of feature trajectories.

2.1.2 Amplitude modulation of speech

Although features based on the source-filter model, such as MFCC, realize accurate speech
recognition in particular environments, speech recognition in realistic environments involves
other problems due to room acoustics and transmission channels. Eq. (2.1) only considers
the source signal and the vocal tract filter. However, filters due to characteristics of rooms
and transmission channels can not be negligible in realistic environments. In order to avoid
effects arose from rooms and transmission channels, feature compensation methods based on
amplitude modulation (AM) of speech signals are proposed.

These AM methods focus on the speed of variations in power spectrum. Since the charac-
teristics of rooms and transmission channels are varying very slowly or staying constant,
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Mel-filterbank

Decorrelation

Preemphasis

Log

Short-time Fourier transform

Mel-windowing

Discreet cosine transform

16 kHz/ 1

Typical framerate/ 

  dimensionality

100 Hz/ 200

100 Hz/ 40

100 Hz/ 40

Liftering

100 Hz/ 12

Augumenting E, ∆ and ∆∆

Σ
100 Hz/ 39

Energy feature

MFCC

 feature

Scalar

Vector

Differenciation MFCC_E_D_A

100 Hz/ 40

16 kHz/ 1

Figure 2.2 Block diagram of MFCC E D A feature extraction
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suppressing lower-frequency variations in feature sequences might be effective. Further,
since vocal tracts cannot move so fast, higher-frequency components are considered as a
non-informative part due to additive noises. Thus, band-pass filtering in feature trajectory
domain is considered as an essential operation for feature extraction.

In the relative spectra (RASTA) technique [Hermansky and Morgan, 1994], which is in-
spired by the human hearing experiments [Green, 1976, Houtgast and Steeneken, 1985], fea-
ture variations around 4 Hz are emphasized. In order to perform this emphasis in feature
sequence, RASTA applies the filter corresponding to the transfer function HRASTA(z) to fea-
ture trajectory. The transfer function HRASTA(z) is defined as follows:

HRASTA(z) = 0.1z4 2 + z−1 − z−3 − 2z−4

1− 0.98z−1
. (2.9)

The RASTA technique is performed by applying the autoregressive moving-average (ARMA)
filter defined by this equation to each component in feature vectors. Figure 2.3 shows the
block diagram of ARMA filter used to perform the RASTA technique.

Figure 2.4 shows the comparison of frequency characteristics of time-domain feature filter-
ing methods. From this figure, it is confirmed that the differentiation operation only empha-
sizes higher-frequency movements. Contrastingly, RASTA method emphasize the compo-
nents around 4 Hz. Since the efficiency of the RASTA operation is confirmed by conducting

Σ

–0.98

z–1

z–1

z–2

2

1

– 1

z–1

– 2

Input

Output

Figure 2.3 Block diagram of the ARMA filter that realizes the RASTA filtering
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several experiments, the direct handling of feature trajectory is now considered as an impor-
tant operation for feature extraction [Vuuren and Hermansky, 1997].

2.2 Acoustic models and training
In this section, a definition of acoustic models (P (X|l)) is described. First, continuous-
density hidden Markov models (CD-HMMs) are described, and then conventional training
methods for CD-HMMs are described.

2.2.1 Continuous-density hidden Markov models

CD-HMM is one of the most successful models for ASR since it is suitable for handling
variable length sequence in a stochastic way. In CD-HMMs, as the name implies, a hidden
state sequence, which is assumed as a first-order Markov chain, is used as a hidden variable.
Emission probabilities of a feature sequence X , given the label sequence l, are obtained by

Delta

CMS

RASTA

Figure 2.4 Modulation frequency characteristics of a numerical differentiation operator
and the RASTA operator. CMS: Cepstral mean subtraction technique [Atal, 1974]; Delta:
Differentiation operator (T = 2)
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marginalizing out the hidden state sequence q, as follows:

P (X|l) =
∑

q

P (q, X|l) def=
∑

q∈S(l)

P (X|q)P (q) def=
∑

q∈S(l)

∏
n

P (xn|qn)P (q). (2.10)

Here, S(l) denote a set of all possible state sequences determined from the given the label
sequence l. Further, the hidden state sequence q is assumed as a first-order Markov chain.
Therefore, P (q) is defined as follows:

P (q) =
∏
n

P (qn|qn−1) =
∏
n

Pqn−1,qn ,

q0 =sBEGIN, qN(q)+1 = sEND,

(2.11)

where sBEGIN and sEND are constants that denote the initial state and the final state, respectively;
N(q), the number of elements in the state sequence q; P , a transition probability matrix.
Figure 2.5 illustrates the dependency between state sequences q and a label sequence l, and
state sequences q and a feature sequence X .

In CD-HMMs, the emission probability for each state is modeled by Gaussian mixture
models (GMMs), as follows:

P (xn|qn) def=
∑
m

ρqn,mN (xn|µG(qn,m), RG(qn,m)). (2.12)

Here, since the same Gaussian pdf (and its parameters) might be shared by several states
and mixture components, a many-to-one mapping function G(s,m) is introduced in order
to map a state index s and a mixture component index m to a Gaussian pdf index g; ρqn,m

is a mixture proportion that satisfy
∑

m ρqn,m = 1; N (xn|µg, Rg) denotes the Gaussian
probability density function (pdf) parametrized by a mean vector µg and a precision matrix
Rg as follows:

N (xn|µg, Rg) =

√
|Rg|

(2π)D/2
exp

{
−1

2
(xn − µg)

TRg(xn − µg)
}

, (2.13)

where D is the dimensionality of xn.
By substituting Eqs. (2.11), (2.12) and (2.13) into Eq. (2.10), the emission probability of

a feature sequence X is derived as follows:

P (X|l) =
∑

q∈S(l)

∏
n

Pqn−1,qn

∑
m

ρqn,mN (xi
n|µG(qn,m), RG(qn,m)). (2.14)

Here, in order to simplify the equation, a sequence of mixture component indices m =
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Figure 2.5 Basic idea of hidden Markov models
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Table. 2.1 Notations for parameters of CD-HMMs (S: the number of all states; D: the
dimensionality of feature vectors)

Notation Description

Θ Set of all parameters; Θ def= {Λ, P}
P State transition probability matrix; P ∈ RS×S

Λ Set of parameters for all emission pdfs; Λ def= {λs|∀s}
λs Set of parameters for the emission pdf at state s;

λs
def= {ρs,m, µG(s,m), RG(s,m)|∀s,∀m}

ρs,m Mixture proportion; s.t. ρs,m > 0,
∑

m ρs,m = 1
µg Mean vector for the gth Gaussian pdf,µg ∈ RD

Rg Precision matrix for the gth Gaussian pdf, Rg ∈ RD×D

{m1,m2, · · · ,mn, · · · } is introduced as follows:

P (X|l) =
∑

q∈S(l)

∑
m

∏
n

Pqn−1,qnρqn,mnN (xi
n|µG(qn,mn),RG(qn,mn))

=P (q, m|l)
∏
n

N (xi
n|µG(qn,mn), RG(qn,mn))︸ ︷︷ ︸

P (X|q,m,l)

=
∑

q∈S(l)

∑
m

P (X, q,m|l).

(2.15)

This expression explicitly shows that CD-HMMs involve two hidden variables, i.e., state
sequence q and mixture component sequence m. The parameters of CD-HMMs are listed in
Table 2.1. The following subsections describe the estimation methods for these parameters.

2.2.2 Maximum likelihood estimation

Hereinafter, let X =
{
X1,X2, · · · ,Xi · · ·

}
be a set of feature sequences in a training

dataset, and L =
{
l1, l2, · · · , li · · ·

}
be a set of label sequences in the training dataset.

The most widely accepted method to estimate parameters is the maximum likelihood
estimation (MLE). In the MLE, a parameter set Θ̂ that maximizes the log-likelihood
FMLE(Θ;X ,L) of the training dataset X , L, is estimated as follows:

Θ̂ =argmax
Θ

log P (X ,L|Θ) = argmax
Θ

log
∏

i

P (Xi, li|Θ)

=argmax
Θ

∑
i

log P (Xi|li, Θ)︸ ︷︷ ︸
FMLE(Θ;X ,L)

+
∑

i

log P (li)︸ ︷︷ ︸
constant

(2.16)
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Because the optimal of the objective functionFMLE(Θ;X ,L) cannot be derived analytically
where the CD-HMMs are used as acoustic models, lower bounds of the objective function,
called auxiliary function, are introduced in order to perform the optimization. As defined in
Eq. (2.15), the emission probability of sequences is defined by using hidden variables; q and
m. Substituting Eq. (2.15) into Eq. (2.16) yields the following objective function.

FMLE(Θ;X ,L)

=
∑

i

log
∑

q∈S(li)

∑
m

P (Xi, q, m|li, Λ) + constant

=
∑

i

log
∑

q∈S(li)

∑
m

∏
n

Pqn−1,qnρqn,mnN (xi
n|µG(qn,mn), RG(qn,mn)) + constant.

(2.17)

In order to obtain a lower bound of the objective function, a probabilistic distribution over
hidden variables Q(q, m; Θ′) parametrized by Θ′ is introduced, and then Jensen’s inequality
is applied as follows:

FMLE(Θ;X ,L)

=
∑

i

log
∑

q∈S(li)

∑
m

Q(q,m; Θ′)

∏
n ρqn,mnN (xn|µG(qn,mn), RG(qn,mn))Pqn−1,qn

Q(q, m; Θ′)

+ constant

≥
∑

i

∑
q∈S(li)

∑
m

Q(q,m; Θ′) log

∏
n ρqn,mnN (xn|µG(qn,mn), RG(qn,mn))Pqn−1,qn

Q(q,m; Θ′)

+ constant

=
∑

i

∑
q∈S(li)

∑
m

Q(q,m; Θ′) log
∏
n

ρqn,mnN (xn|µqnmn
, Rqnmn)Pqn−1,qn

−
∑

q∈S(li)

∑
m

Q(q, m; Θ′) log Q(q, m; Θ′)

︸ ︷︷ ︸
constant

+constant

=
∑

i

∑
q∈S(li)

∑
m

∑
n

Q(q, m; Θ′)
(
log ρqn,mn + logN (xn|µG(qn,mn),RG(qn,mn)) + logPqn−1,qn

)
+ constant

def= F̃MLE(Θ;X ,L, Θ′).
(2.18)

The optimum of the auxiliary function F̃MLE(Θ;X ,L, Θ′) with given Θ′ can be solved ana-
lytically.
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It should be noted that the auxiliary function F̃MLE touches the original function FMLE

at Θ′, where Q is set as the posterior pdf of hidden variables, i.e. Q(q, m; Θ′) def=
P (q, m|Xi, li, Θ′), as follows:

F̃MLE(Θ;X ,L,Θ′) |Θ=Θ′

=
∑

i

∑
q∈S(li)

∑
m

P (q, m|Xi, li, Θ′) log
P (Xi, q, m|li, Θ′)
P (q, m|Xi, li, Θ′)

+
∑

i

log P (li)

=
∑

i

∑
q∈S(li)

∑
m

P (q, m|Xi, li, Θ′) log
P (q, m|Xi, li, Θ′)P (Xi|li, Θ′)

P (q,m|Xi, li,Θ′)
+
∑

i

log P (li)

=
∑

i

log P (Xi|li, Θ′) +
∑

i

log P (li) = FMLE(Θ;X ,L).

(2.19)

Since this lower bound touches the original objective function FMLE(Θ;X ,L), iterative up-
date of Θ converges a local optimum of the original optimization function. Specifically, the
current estimate of Θ is used to determine Q(q, m|Θ), and then Θ is updated by using the
current setting of Q. The iterative optimization algorithm based on this setting is termed
Expectation-Maximization (EM) algorithm. By using this Q function, the auxiliary function
is decomposed into each frame, as follows:

F̃(Θ;X ,L, Θ′) =
∑

i

∑
n

∑
s,m

P (qn = s,mn = m|Xi, li, Θ′) logN (Xn|µG(s,m), RG(s,m))

+
∑

i

∑
n

∑
s

P (qn = s,mn = m|Xi, li, Θ′) log ρqn,mn

+
∑

i

∑
n

∑
s,s′

P (qn−1 = s, qn = s′|Xi, li, Θ′) logPs,s′ ,

(2.20)

where

P (qn = s, mn = m|X, l,Θ′) =
∑

q∈S(l)

∑
m

P (qn = s, mn = m|X, l,Θ′),

P (qn−1 = s, qn = s′|X, l,Θ′) =
∑

q∈S(l)

P (qn−1 = s′, qn = s|X, l, Θ′).
(2.21)

In order to efficiently perform the EM algorithm, the forward-backward algorithm is used
in general. In this algorithm, each HMM state occupation probability P (qn = s|Xi, li,Θ′)
is computed as a product of a forward probability (exp αi

n,s) and a backward probability
(expβi

n,s), as follows:

P (qn = s|Xi, li, Θ′) = exp(αi
n,s + βi

n,s − βi
0,sBEGIN) (2.22)
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where

αi
n,s = log

{∑
s′

exp
{
α(n−1),s′

}
P (xi

n−1|qn−1 = s′,Θ′)P ′
s′,s

}
,

βi
n,s = log

{∑
s′

exp
{

βi
(n+1),s′

}
P (xi

n|qn = s,Θ′)P ′
s,s′

}
,

αi
1,sBEGIN =0.0,

βi
N(Xi)+1,sEND =0.0,

(2.23)

where P ′
s′,s is a state transition probability matrix in the parameter set Θ′.

From the definition of CD-HMMs, pdfs depending on Θ′ in Eq. (2.20) can be computed
as follows:

P (qn = s,mn = m|Xi, li, Θ′) =P (mn = m|Xi, li, qn = s)P (qn = s|Xi, li,Θ′)

=
N (xi

n|µ′
G(s,m), R

′
G(s,m))∑

m′ N (xi
n|µ′

G(s,m′), R
′
G(s,m′))

exp
{
αi

n,s + βi
n,s − βi

0,sBEGIN
}

P (qn−1 = s, qn = s′|Xi, li, Θ′) =P (qn−1 = s′|Xi, li, Θ′)P (qn = s|Xi, li, Θ′)
(2.24)

where µ′
g and R′

g are parameters in the parameter set Θ′. Note that these variables (αi
s,m,

βi
s,m) can be computed efficiently by using a recursive procedure. By using these variables

(α, β), the optimal point of the auxiliary function FMLE(Θ;X ,L, Θ′) can be expressed as
follows:

µ̂g =
∑

i χ1
g(X

i, li; Θ′)∑
i χ0

g(Xi, li; Θ′)
,

R̂g =Σ̂
−1

g ,

Σ̂n =
∑

i χ2
g(Xi, li; Θ′)∑

i χ0
g(Xi, li; Θ′)

− µ̂gµ̂
T
g ,

ρ̂s,m =

∑
i χ0

G(s,m)(X
i, li; Θ′)∑

i

∑
m′ χ0

G(s,m′)(X
i, li; Θ′)

,

P̂s,s′ =

∑
i χTR

s,s′(Xi, li; Θ′)∑
s̃

∑
i χTR

s,s̃(Xi, li; Θ′)
,

(2.25)

where the functions χ0
g, χ1

g, χ2
g , χTR

s,s′ are termed as “sufficient statistics function” in this
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thesis, and expressed as follows:

χ0
g(X

i, li; Θ′) def=
N(Xi)∑

n=1

P (qn = s,mn = m|Xi, li, Θ′),

χ1
g(X

i, li; Θ′) def=
N(Xi)∑

n=1

P (qn = s,mn = m|Xi, li, Θ′)xi
n,

χ2
g(X

i, li; Θ′) def=
N(Xi)∑

n=1

P (qn = s,mn = m|Xi, li, Θ′)xi
n(xi

n)T,

χTR
s,s′(Xi, li; Θ′) def=

N(Xi)∑
n=2

P (qn = s, qn−1 = s′|Xi, li, Θ′).

(2.26)

Since all probability P (.) used in the above definition of sufficient statistics functions can be
computed by using the forward-backward algorithm as shown in Eq. (2.24), the computation
of sufficient statistics functions is tractable.

2.2.3 Bayesian inference

Recently, Bayesian inference is introduced as a generalization of MLE that enables diverse
extensions. In Bayesian inference, the optimal parameters are not determined but proba-
bilistic distributions of parameters are inferred. This thesis avoids detailed discussions about
Bayesian inference, and just introduces a basic idea of distribution-based expression of pa-
rameters.

By using Bayes’ law, a distribution (posterior pdf) of parameter set Θ, given the obtained
dataset X ,L, is written as follows:

P (Θ|X ,L) =
P (X ,L|Θ)P 0(Θ)

P (X ,L)
(2.27)

where P 0(Θ) is a prior pdf that reflects the prior belief of the parameters *1. Here, the
maximum-a-posteriori (MAP) estimation is derived by using the mode-value of the posterior
pdf as a representative parameter, which is obtained as follows:

Θ̂MAP = argmax
Θ

P (Θ|X ,L) = argmax
Θ

P (X ,L|Θ)P 0(Θ). (2.28)

Further, the MLE is derived by introducing a uniform pdf to MAP estimation as follows:

Θ̂MLE = argmax
Θ

P (X ,L|Θ). (2.29)

*1 In this thesis, prior pdfs are distinguished by using P 0 notation.
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Thus, the Bayesian inference is considered as a generalization of these estimation methods.
Advantages of the Bayesian inference are listed as follows:

• Utilization of a prior belief of the parameters, and
• Robust classification performed by marginalizing (integrating) all possible parameters

over a posterior pdf (a.k.a. Bayesian predictive classification).

In the case of CD-HMM parameter inference, the posterior pdf P (Θ|X ,L) is not tractable.
The variational approximation methods are often introduced to realize Bayesian methods in
such cases.

In the variational Bayesian methods [Attias, 2000, Watanabe, 2006], an approximated pos-
terior pdf P̃ (Θ), which is restricted to a specific pdf family, is obtained by minimizing the
Kullback-Leibler divergence (KL divergence) of an approximated posterior pdf P̃ (Θ) from
the true posterior pdf P (Θ|X ,L). Thus, the approximated posterior pdf is obtained as fol-
lows:

P̃ (Θ) = argmax
P (Θ)

KL[P (Θ)||P (Θ|X ,L)]︸ ︷︷ ︸
FVB[P̃ (Θ)]

(2.30)

where P (Θ|X ,L) is the true posterior pdf defined in Eq. (2.27), and the KL divergence is
defined as follows:

KL[P̃ (Θ)||P (Θ|X ,L)] =
〈
log P̃ (Θ)− P (Θ|X ,L)

〉
P̃ (Θ)

. (2.31)

It is known that the Bayesian inference is advantageous, even if the training data is limited.

2.2.4 Discriminative training

The models obtained by the Bayesian inference or its specialized methods (MLE/ MAP) are
accurate in the sense of statistic generative models. However, because the ultimate objec-
tive of model estimation for ASR is construction of classifiers, several discriminative training
methods are proposed in order to optimize classification performance of constructed classi-
fiers.

In discriminative training methods, model parameters are estimated by optimizing a dis-
criminative criterion function. Several criteria for discriminative training are proposed.

Minimum classification error (MCE) attempts to minimize the number of misclassifica-
tion label sequences [Juang and Katagiri, 1992]. Because the number of misclassification is
denoted by discrete value, a smoothed misclassification number function is often used as an
optimization criterion.

Ideally, the number of misclassification (error) of a classifier E(Θ) defined by a parameter
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Θ is represented as follows:

E(Θ) =
∑

i

(
1−H

(
log

P (Xi, li|Θ)
maxl P (Xi, l|Θ)

))
= N(X )︸ ︷︷ ︸

constant

−
∑

i

H
(

log P (Xi, li|Θ)−max
l

log P (Xi, l|Θ)
)

︸ ︷︷ ︸
FMCE(Θ;X ,L)

(2.32)

whereH(x) is the Heaviside-step function that returns 1 when x > 0 and 0 otherwise, N(X )
is the number of training sequences.

MCE training is aiming for minimizing this error function by maximizing the objec-
tive function FMCE(Θ;X ,L). The objective function is discontinuous because it includes
Heaviside-step function H and max function. Hence, in order to perform optimization by
using gradient-based optimization methods, a smoothed objective function F̃MCE(Θ;X ,L)
is introduced by using a smoothed Heaviside-step function H̃ and a softmax function, as
follows:

F̃MCE(Θ;X ,L) =
∑

i

H̃
(
log P (Xi, li|Θ)− softmaxl 6=li log

(
P (Xi, l|Θ)

))
(2.33)

where softmaxl 6=li

{
P (Xi, l|Θ)

}
is often defined as follows:

softmaxl 6=li

{
log P (Xi, l|Θ)

} def=
1
η

log
∑
l 6=li

(
P (Xi, l|Θ)

)η
, (2.34)

where η is a hyper-parameter that controls the approximate accuracy of the softmax function.
Several functions are used as smoothed Heaviside-step functions H̃. For example, linear
function, sigmoid function, or piecewise linear function are used. A smoothed Heaviside-
step function is termed as “loss function.”

Maximum mutual information estimation (MMIE) is performed by maximizing mutual
information between the feature vector sequence variable X and the label sequence variable
l [Bahl et al., 1986]. Mutual information to be maximized is defined as follows:

I[X; l] def= H[P (l)]︸ ︷︷ ︸
constant

−H[P (l|X, Θ)]

=constant− 〈− log P (l|X, Θ)〉P (l|X,Θ)︸ ︷︷ ︸
expectation

(2.35)

Here, by approximating the expectation operator by the empirical average computed from
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the training dataset, mutual information is approximated as follows:

I[X; l] ≈constant +
1

N(L)︸ ︷︷ ︸
constant

∑
i

log P (li|Xi)

=constant + constant×
∑

i

log
P (li, Xi)
P (Xi)

=constant + constant×
∑

i

log
P (li,Xi)∑
l P (l, Xi)

=constant + constant×
∑

i

log
P (Xi|li)P (li)∑

l P (Xi|l)P (l)︸ ︷︷ ︸
FMMI(Θ;X ,L)

(2.36)

Although MMIE is not explicitly aiming for reduction of classification errors, MMIE is
also considered as a discriminative training method since error hypotheses l 6= li are also
considered in the objective function.

Minimum phone error (MPE) is performed by maximizing the expectation of a phone
accuracy function [Povey and Woodland, 2002]. As contrasted to the MCE training that is
aiming for minimization of sequence errors, MPE training is aiming for minimization of
phone errors.

MPE training estimates the parameters so that the expectation of phone accuracy function
A(l, li) over the sequence posterior pdf P (l|X,Θ) is maximized. The expectation to be
maximized is expanded as follows:∑

i

〈
A(l, li)

〉
P (l|Xi,Θ)

=
∑

i

∑
l

P (l|Xi,Θ)A(l, li)

=
∑

i

∑
l

P (l,Xi|Θ)
P (Xi|Θ)

A(l, li)

=
∑

i

∑
l

P (l, Xi|Θ)∑
l′ P (Xi, l′|Θ)

A(l, li)

=
∑

i

∑
l P (l,Xi|Θ)A(l, li)∑

l P (Xi, l|Θ)︸ ︷︷ ︸
FMPE(Θ;X ,L)

(2.37)

By using this expanded objective function FMPE(Θ;X ,L) and an appropriate approxima-
tion method of phone accuracy function A(l, li) described in [Povey and Woodland, 2002],
the objective function can be maximized by using the extended Baum-Welch algorithm
[Woodland, 2002].
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2.3 Hidden Markov models/ multi-layer perceptron

tandem approach
Another approach to improve classification performance of HMMs is HMM/MLP-tandem
approach [Hermansky et al., 2000]. Because the discriminative training methods are based
on standard CD-HMMs, nonlinearities of classification are limited by a choice of emission
pdf family.

In tandem-approach, nonlinearities in feature vectors are resolved by using MLP-based
monophone classifiers, and then classification result sequences are decoded by using stan-
dard CD-HMMs. Because MLPs can efficiently represent nonlinear classification bound-
aries when compared with GMM-based emission pdfs, the use of MLPs is effective. Figure
2.6 shows a block diagram of HMM/MLP-tandem systems. Recently, HMM/MLP-tandem
approaches are used in order to cope with high-dimensional features [Morgan et al., 2005,
Chen et al., 2005].

By introducing the frame-level label sequence lin (n = [1..N(Xi)]), the optimal trans-

Feature extraction

Tandem feature transform

TANDEM FEATURES

Framewise MLP classifier

Feature remapping

RAW FEATURES

FRAME-LEVEL SCORE

Figure 2.6 The block diagram of HMM/MLP-tandem based frontend
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formed features x̂i
n are defined as follows:

x̂i
n

def= vec{1(lin, l)|∀l} (2.38)

where lin is a element in the set of monophones, vec is the vectorizing function which con-
struct a vector from the given predicate, 1 is the Kronecker delta function denoted as follows:

1(x, y) =

{
1 x = y,

0 otherwise.
(2.39)

In general, frame-level labels lin are obtained by an HMM force alignment method.
In order to realize the above transformation for an input raw feature vector x, a transform

function T parametrized by Ξ̂ is used as follows:

xMLP def= T (x; Ξ̂) (2.40)

where Ξ̂ is estimated so that the squared error over the training dataset is minimized, as
follows:

Ξ̂ = argmin
Ξ

∑
i

N(Xi)∑
n=1

||T (xi
n; Ξ)− x̂i

n||2 (2.41)

Here, a multi-layer perceptron (MLP) is introduced as a transform function in Eqs. (2.40)
and (2.41). The transform function defined by an MLP is expressed as follows:

T (x; Ξ) =aU (x; Ξ)

a0(x; Ξ) =x

au(x; Ξ) =ζu(Cuau−1(x) + bu)

(2.42)

where Ξ = {Cu, bu|u = [1..U ]}, U is the number of layers in MLP as a hyper parameter,
and ζu is the nonlinear vector warping function at uth layer. The optimization is efficiently
solved by using the back-propagation algorithm [Rumelhart and McClelland, 1986].

In general, element-wise sigmoid function ς is used as ζu for all u, denoted as follows:

ζu(x) def= ς(x) ∀u,

ς(x) = [ς(x1), ς(x2), · · · ]T ,

ς(xd) =
1

1 + exp (−xd)
,

(2.43)

where d is an index of dimensionality.
Because the optimal transformed feature vector x̂i

n is a binary vector, the distribution of
xMLP, which is trained to approximate x̂i

n, is also skew. Therefore, GMMs used in conven-
tional CD-HMMs are not suitable as models of xMLP. In order to adapt the features xMLP to the
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GMMs, feature remapping operations are used. Conventionally, elementwise logarithm func-
tions followed by Karhunen-Loeve transformation (KLT) is used to adapt the MLP-output
vectors into GMMs. Hence tandem features xTANDEM are typically obtained as follows:

xTANDEM
n = KMLP ·

(
log

(
xMLP

n

))
(2.44)

where log denotes a multivariate function that applies logarithm for each element, and KMLP

is a KLT projection matrix, which is obtained as follows:

KMLP def=argmax
K

∣∣∣∣∣∑
i

∑
n

(Klog
{
xi,MLP

n

}
−Kx̄)(Klog

{
xi,MLP

n

}
−Kx̄)T

∣∣∣∣∣ ,
x̄

def=
∑

i

∑
n log

{
xi,MLP

n

}∑
i N(Xi)

,

(2.45)

where K is restricted to be a orthonormal matrix.
Finally, the tandem feature vectors xTANDEM

n are obtained from input vectors x and the train-
ing dataset X ,L. Although the tandem methods include MLP-classifiers in their formulation,
the tandem-approach is also considered as a feature extraction process that can effectively
deal with high-dimensional features.
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Chapter 3

High-dimensional features based
on frequency modulation of speech

In order to construct high-dimensional representations of speech signals, this chapter de-
scribes novel speech features based on frequency modulation of speech signals. The effi-
ciency of the proposed speech features is confirmed by carrying out reverberant speech recog-
nition experiments and noisy speech recognition experiments. The motivation, approach, and
previous studies are discussed in Section 3.1. The proposed method is presented in Section
3.2. The conventional ensemble classification method of high-dimensional features is intro-
duced and described in Section 3.3. The experimental setup and experimental results are
presented in Section 3.4.

3.1 Introduction
To utilize automatic speech recognition (ASR) systems in realistic environments, their robust-
ness to environmental effects, including the presence of additive noise and/or multiplicative
noise, is important. Although these effects certainly damage acoustical features, the accu-
racy of human speech recognition is not degraded as much as that of ASR [Lippmann, 1997].
This deficit in speech recognition can be prevented by enhancing acoustical features by using
multiple feature streams and temporal information.

In general, it is considered that in human speech recognition, multiple acoustical cues are
extracted and the available cues (feature streams) are selected adaptively to recognize speech
robustly [Allen and Li, 2009, Zeng et al., 2005]. The use of multiple feature streams is con-
sidered to be an efficient technique because most environmental effects damage limited prop-
erties of the signal. For example, locations of zero-crossing points in signals are stable even
if the signal is corrupted by low-energy additive noise, since these locations are determined
by dominant spectral peaks. In machine recognition, dynamic integration of multiple fea-
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ture streams is utilized by employing multistream speech recognizers, which estimate speech
recognition results from multiple heterogeneous features [Janin et al., 1999]. In order to ex-
ploit the multistream speech recognizers, each stream should compensate for the shortcoming
of the other streams. Therefore, complementarity of features is important [Sharma, 1999].

On the other hand, several studies on human speech perception have suggested the
importance of temporal speech features [Green, 1976]. A strong evidence of the use
of features derived by temporal processing is that speech intelligibility can be esti-
mated by measuring amplitude modulation (AM) degradation caused by room acoustics
[Houtgast and Steeneken, 1985]. Furthermore, the frequency modulation (FM), which can
be treated as the residue of AM, is also considered to be an important acoustical property
used in human speech perception [Paliwal and Alsteris, 2003]. [Yoshida et al., 2002] con-
firmed that the reconstructed signal that preserves the locations of the zero-crossing points
of narrow-band waveforms is perceivable by human speech recognition although the AM
information in the reconstructed signal is heavily corrupted.

In conventional recognizers, the dynamics of speech are represented by using time-series
derivative of features as augmented features. In addition, as in perceptual studies, the
importance of AM processing is discussed. As in human speech perception, RASTA (relative
spectra) processing of speech proposed by [Hermansky and Morgan, 1994] emphasize
the temporal dynamics of narrow-band envelope around 4 Hz in order to achieve robust
speech recognition. Recently, data-driven temporal filtering techniques are applied to
narrow-band envelopes as extensions of RASTA [Vuuren and Hermansky, 1997]. TRAPS
(temporal patterns) [Hermansky and Sharma, 1998], HATS (hidden activation TRAPS)
[Chen et al., 2004a], and tonotopic multilayer perceptrons (TMLP) [Chen et al., 2005]
are introduced as an integration of two state-of-the-art technologies: data-driven AM
filtering and hidden Markov model/multilayer perceptron (HMM/MLP)-tandem approach
[Hermansky et al., 2000]. These techniques can extract efficient modulation from narrow-
band envelopes of speech signals and are applied to large-vocabulary continuous speech
recognition (LVCSR) tasks [Morgan et al., 2005]. Although hidden Markov models
(HMMs) are capable of representing temporal changes in acoustical features by transition
of the hidden states, this capability is rather poor. This is because the representation of
continuous movements of acoustical properties is not accurate since the states in HMMs
have discrete values. Furthermore, HMMs cannot represent the long-span dependency
because state transitions are assumed to be first-order Markov chains. Therefore, the use of
dynamic features that represent continuous long-range movements of acoustical properties is
necessary.

Features based on the FM in speech signals have been investigated as complementarity fea-
tures of AM. Complementarity is an important factor for construction of multistream speech
recognizers. Several methods are used to extract phonetic information from the FM in speech



3.2 Classification of frequency modulation patterns 31

signals. For example, [Wang et al., 2003] employed the segmental average instantaneous fre-
quencies of signals. [Chen et al., 2004b] proposed a method based on spectral centroids,
which depends on FM of signals. [Dimitriadis et al., 2005] employed the average of instan-
taneous frequencies weighted by amplitudes. However, these methods are not competitive in
performance when FM features are used separately, because these features are proposed as
alternatives in combination with amplitude-based features.

However, the results of the perceptual experiments [Yoshida et al., 2002] encouraged the
author to consider that FM in speech signals certainly contains phonetic information. In these
experiments, it is confirmed that the reconstructed signal that preserves the zero-crossing
points of narrowband waveforms are perceivable through human speech recognition. In this
thesis, it is considered that FM features can be used as independent features as well as com-
plemental features, if appropriate temporal analyses are carried out. In order to confirm this
hypothesis, the data-driven modulation filtering technique are applied to instantaneous fre-
quency trajectories, and then the speech recognition performance is verified when the FM
features are used individually and in combination.

3.2 Classification of frequency modulation patterns
In this section, the proposed FM feature extraction system, which can be regarded as a fre-
quency modulation variant of HATS [Chen et al., 2004a], is described. Figure 3.1 shows the
block diagram of the proposed system. As shown in the figure, input signals are separated
into narrow-band signals by using a filterbank. Then, the pseudo instantaneous frequencies
(PIFs) are extracted for each channel in the filterbank. Temporal filters are applied to empha-
size essential modulation in the input trajectory of instantaneous frequency. Each component
shown in the diagram is described in the following subsections.

3.2.1 Filterbank

In this study, an equal-bark-filterbank defined in [Hermansky, 1990] is used to simulate the
frequency responses of the basal membrane of the lining of the inner ear.

The frequency response of kth frequency bin of dth channel (wEBF
d,k ) is defined by the band-
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pass filter with exponential slope Ψ(z) in the Bark frequency scale ΩBARK(ω) as follows:

wEBF
d,k =Ψ

(
ΩBARK

(
k

K
ωRATE

)
− d

)
,

ΩBARK(ω) =6 log

(
ω

1200π
+

√( ω

1200π

)2

+ 1

)
,

Ψ(z) =



0 z < −1.3,

102.5(z+0.5) −1.3 ≤ z ≤ −0.5,

1 −0.5 < z < 0.5,

10−1.0(z−0.5) 0.5 ≤ z ≤ 2.5,

0 2.5 < z,

(3.1)

where K is the number of frequency bins, which determines the number of samples used in
the following frequency sampling method, ωRATE is the sampling rate of the raw input signal
r in angular frequency (rad/s). Figure 3.2 shows the frequency responses of the filterbank
wEBF

d,k as functions of frequency.
The filters in the filterbank are implemented as finite-impulse-response (FIR) filters be-

cause it is important to maintain the time-series waveform of signals and linear phase char-
acteristics of filters in this study. Here, impulse responses hEBF

b of the FIR filters is obtained

Speech signal

Filterbank

PIF extraction

Temporal filters

HMM/MLP tandem acoustic modeling

PIF extraction

Temporal filters

Results

. . . 

. . . 

Figure 3.1 Block diagram of proposed FM processing system. The components that
require training session are depicted with a thick border
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by applying frequency sampling method to wEBF as follows:

hEBF
d

def= Re[F−1
(
W EBF

)T
d
], (3.2)

where F−1 is the matrix representation of the inverse Fourier transform.
Then, a narrow band signal rd

def= {rd,1, rd,2, · · · , rd,t, · · · } of the speech signal r
def=

{r1, r2, · · · , rt, · · · } is obtained by using convolution, as follows:

rd,t
def=

N(hEBF
d )∑

τ=1

hEBF
d,τ · rt−τ (3.3)

It should be noted that rd is sampled at the same sample rate with original speech signal r,
and is also intractable in statistical models.

3.2.2 Pseudo instantaneous frequency extraction

Several methods have been proposed for AM-FM decomposition, such as the Teager en-
ergy operator (TEO) method [Kaiser, 1993] and the method based on the Hilbert transform
[Boashash, 1992, Suzuki et al., 2006]. Since the primary motivation behind this study is
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Figure 3.2 Frequency response of filterbank wEBF
b,k
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based on the human perception of the zero-crossing points in signals, a instantaneous fre-
quency (IF) of speech signals are defined by using their zero-crossing points.

The PIF used in this paper is obtained by the following procedure:

1. Measure the time interval 0d,t between the preceding and the following zero-crossing
points for the sample at time t in dth narrowband signal.

2. The dth -channel logarithmic PIF ($d,t) at time t is defined by $d,t
def= log π

0d,t
.

Figure 3.3 shows the trajectories of PIF and IF obtained by a numerical method
[Suzuki et al., 2006]. As shown in the figure, the PIF is correlated to the IF derived by
Hilbert transform method. However, PIF has some practical advantages compared to the IF
obtained Hilbert transform method;

• PIF can be defined in silent segments of signal,
• PIF value is ensured to be positive.

PIFs can be considered as variants of zero crossing with peak amplitude (ZCPA) features
[Kim et al., 1999, Gajic and Paliwal, 2003], in which amplitude weighting is omitted. While
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Figure 3.3 Instantaneous frequency obtained by the numerical approach (NIF)
[Suzuki et al., 2006] and the PIF of a single sinusoid with FM (top) and a narrow-band
speech signal (bottom)
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amplitude weighting can improve performance, it can also make features dependent on AM
information. This dependency leads to losses in complementarity properties.

The average of the PIF signal is computed for each 25 ms window (10 ms shift) in order
to achieve equivalence between the frame rate of proposed and conventional features. Figure
3.4 shows an example of the trajectory of logarithmic envelope and logarithmic PIF. The
behaviors of the trajectories of PIF appear disordered and chaotic as compared to envelopes.
In order to efficiently handle such complicated trajectories, MLP-based temporal filters and
MLP-based acoustic modeling are employed in the system.
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Figure 3.4 Narrow-Band logarithmic envelope (top) and logarithmic PIF (bottom) of
speech. (The mean and variance are normalized to 0.5 and 0.25, respectively, for visu-
alization)
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3.2.3 Temporal filters

In this section, temporal filtering is applied to Log-PIF sequences $d = {$d,1, · · · , $d,n, · · · }
in order to emphasize modulation components, which contribute to improve discriminativity
of phoneme categories in the Log-PIF. The emphasis technique used in this chapter is based
on multilayer-perceptron, which is conventionally used to extract the significant amplitude
modulation (AM) from envelopes [Chen et al., 2004a]. In this chapter, this technique is
applied to the trajectory of Log-PIF to extract frequency modulation.

First, in order to reduce the sampling rate, the low-pass filtering and resampling to Log-PIF
sequence are applied. Then, fixed-length subsequence are defined as a features as follows:

xIFS
d,n

def= [$̃d,(n−(D−1)/2), · · · $̃d,n, · · · $̃d,(n+(D−1)/2)]T (3.4)

where an odd number D is the number of dimensionality of subsequence xIFS
d,n, which is

typically set at 51, and $̃d,n is nth frame of resampled Log-PIF sequence obtained from dth

channel.
Then, similar to the tandem-approach described in Section 2.3, an MLP-based classifier

for each subsequence that attempts to classify subsequence to a frame-level phoneme label
is introduced. Here, a 2-layer perceptron and sigmoid-type nonlinear warping functions are
used as follows:

T (x; Ξd) =ς

Cd,2

ς

Convolution︷ ︸︸ ︷
Cd,1x +bd,1


︸ ︷︷ ︸

Nonlinear compression

+ bd,2

 , (3.5)

where Ξd
def= {Cd,1 ∈ R

D×M , Cd,2 ∈ R
M×|P|, bd,1 ∈ R

M , bd,2 ∈ R
|P|} is the parameter

of the MLPs corresponding to dth channel, |P| is the number of elements in a set of mono-
phones, M is a hyper-parameter to determine the number of feature components extracted
from instantaneous frequency trajectory. Reconsidering that x is taken from subsequences of
$d, the linear transformation of x can be assumed as convolution of $d. Therefore, each
element in the transformed vector Cd,1x can be assumed as an output of linear convolution
filters. The sigmoid function can be assumed as nonlinear compression applied to filtered
trajectory Cd,1x.

In this formulation, optimal filter coefficients Cd,1 can be obtained by standard the Back-
Propagation Algorithm. Similar to tandem-approach, by introducing the teaching signal Eq.
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(2.38), the optimization with respect to phoneme classification can be expressed as follows:

Ξ̂d = argmin
Ξd

∑
i

N(Xi)∑
n=1

||T (xiIFS
n ; Ξd)− x̂i

n||2 (3.6)

Further, the emphasized features can be defined by using an incomplete MLP-function
T̃ (x; Ξ̂d), as follows:

xFM
n

def=
[
T̃ (xIFS

1,n; Ξ̂1)T, T̃ (xIFS
2,n; Ξ̂2)T, · · · ,

]T
T̃ (x; Ξ̂d) =ς (Cd,1 · x + bd,1)

(3.7)

The average modulation frequency response of the filters, obtained by the data set used
in Section 3.4, is shown in Figure 3.5. Interestingly, similar to the studies on AM features
[Hermansky, 1998], the modulation around 4 Hz is important even in the discrimination of
FM features.

3.3 Combination of AM and FM classifiers
This section describes a combination method of AM and FM classifiers derived from
an inverse-entropy-based combination of the tandem acoustic models, as introduced by
[Okawa et al., 1998, Ikbal et al., 2004].

The AM processing method used in this study is the HATS system proposed by
[Chen et al., 2004a]. Since the proposed system can be assumed to be an extension of HATS,
most of the fundamental frameworks can be commonly used. Figure 3.6 shows a block
diagram of the combination systems.

By applying this technique, the feature vector of the combined system (Amplitude and
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Figure 3.5 Average of modulation frequency responses ŵnb for all channels and all mod-
ulation components
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Frequency Modulation Classifiers; AFMC) can be defined as follows:

xAFMC
n

def= νnxFMMLP
n + (1− νn)xAMMLP

n , (3.8)

where νn is the dynamic weighting coefficient, and xFMMLP and xAMMLP are the output vectors
of FM-MLP and AM-MLP obtained by using the MLP function T , as follows:

xFMMLP
n

def=T
(
xFM

n ; Ξ̂FMMLP
)

,

xAMMLP
n

def=T
(
xAM

n ; Ξ̂AMMLP
)

.
(3.9)

Here, the parameter sets, Ξ̂FMMLP and Ξ̂AMMLP are obtained by the standard back propagation
algorithm. xAM is the feature vector obtained from the HATS system.

The HATS feature vector xAM is obtained by emphasizing energy trajectory of narrow-band
signals as follows:

xAM
n

def=
[
T̃ (xIAS

1,n; Ξ̂1)T, T̃ (xIAS
2,n; Ξ̂2)T, · · · , T̃ (xIAS

B,n; Ξ̂B)T,
]T

xIAS
b,n

def= [ẽb,(n−(D−1)/2), · · · ẽb,n, · · · ẽb,(n+(D−1)/2), ]T
(3.10)

where ẽb,n is the energy of nth frame in bth channel obtained as follows:

ẽb,n =
T STOP

n∑
t=T START

n

||rb,t||2. (3.11)

Here, T START
n and T STOP

n are the indices of the first sample and the last sample in the nth frame.
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Figure 3.6 Block diagram of combination of proposed system and HATS system. The
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The weight coefficient νn is determined by inverse entropy {H[.]}−1 of monophone pos-
terior pdfs (P̃ (d|xAMMLP

n ) and P̃ (d|xFMMLP
n )) estimated from the output vectors (xFMMLP

n and
xAMMLP

n ), as follows:

νn =

{
H[P̃ (d|xAMMLP

n )]
}−1

{
H[P̃ (d|xFMMLP

n )]
}−1

+
{

H[P̃ (d|xAMMLP
n )]

}−1 ,

P̃ (d|xn) def=
(exp (xn,d)− 1)−1∑
d′ (exp (xn,d′)− 1)−1

H[P̃ (d|.)] =−
∑

d

P̃ (d|.) log P̃ (d|.),

(3.12)

where P̃ (d|xFMMLP
n ) and P̃ (d|xAMMLP

n ) are the estimated posterior probability calculated by the
cancellation of the sigmoid function and application of softmax transfer function to the output
of FM-MLP and AM-MLP, respectively.

Figures 3.7, 3.8 and 3.9 show examples of trajectories of xAFMC, xFMMLP and xAMMLP, respec-
tively. The utterance used in these examples is “/sil i ch i sil/” (clean speech). As shown in
Figure 3.8 and 3.9, monophone classification can be performed by both of the FM classifier
and the AM classifier even though FM patterns appear disordered and chaotic (cf. Figure
3.4). Furthermore, the accurate recognition can be done by using combination of classifier as
shown in Figure 3.7.

3.4 Experiments and discussions
In order to evaluate the performance of the proposed system, noisy digit recognition exper-
iments are performed. In this section, the efficiency of FM features used individually is
evaluated at first. Then, the performance of the system with FM features used in combination

Figure 3.7 Trajectories of xAFMC as functions of frame n
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is evaluated by multistream speech recognition experiments. Furthermore, to investigate the
advantages of the FM analysis, the noisy speech recognition experiments in artificial noisy
environments are performed.

3.4.1 Dataset and model description

The training set and the test set are taken from CENSREC-1 (a.k.a. AURORA-2J)
[Nakamura et al., 2005], which is the Japanese translation of the dataset AURORA-2
[Pearce and Hirsh, 2000]. The training set used for both MLP and HMM comprises 8,440
utterances of clean speech obtained from 110 speakers. In these experiments, the sample rate
of speech signals is fixed to 8,000 Hz. Therefore, the Bark filterbank splits the signals into
14 filtered signals.

In the experiments, 20 frequency modulation components are extracted for each narrow-
band signal. Therefore, the number of features used in acoustic models is the product of the
number of bands (14) and 20 (i.e. M = 20 in Eq. (3.5)). The number of hidden neurons for

Figure 3.8 Trajectories of xFMMLP as functions of frame n

Figure 3.9 Trajectories of xAMMLP as functions of frame n
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MLPs in tandem acoustic models is fixed to 200.
The HMM configurations in the experiments are same as those in CENSREC-1 baseline

systems and similar to those in standard AURORA-2 baseline systems; each digit is modeled
by CD-HMM with 16 states, silence is modeled by 5-state CD-HMM, and short-pause is
modeled by 3-state CD-HMM. The number of mixture components is fixed to 20 for digit
HMMs and 36 for silence or short-pause HMMs. Only the variances of features are modeled
by the Gaussian distributions. In other words, all covariance matrices in the models are
assumed to be diagonal.

3.4.2 Noisy speech recognition experiments

In order to clarify the individual performance of FM features, a noisy speech recognition
task is carried out. Four noise environments from CENSREC-1 (restaurant, street, station,
and airport) are selected for the test. The test set comprises 1,001 utterances for each noise
environment and each signal-noise-ratio (SNR) condition.

Following speech recognition systems are compared:

• MFCC
This is the standard MFCC speech recognition system. MFCC features are augmented
by energy (E), ∆ MFCC, ∆E, ∆∆ MFCC, and ∆∆ E.
• MFCC (CMS)

Speech recognizer is constructed by incorporating utterance-level cepstral mean sub-
traction (CMS) techniques.
• AIF

The recognizer is based on average instantaneous frequency (AIF) features that are
defined by removing the average log-envelope (ALE) features from the AIF/ALE sys-
tems [Wang et al., 2003] (augmented by its derivations and accelerations; 42 dimen-
sions.)
• HATS (AM)

The recognizer is based on HATS system [Chen et al., 2001, Chen et al., 2004a]. AM
features are extracted by using data-driven temporal filtering method. The number of
features is 280. The acoustic model is based on the HMM/MLP tandem approach.
• FM

This is the proposed FM processing systems. The number of features is 280. The
acoustic model is based on the HMM/MLP-tandem approach.

Figure 3.10 shows the word error rates of the methods being compared, as a function of
SNR.

From the figure, it is confirmed that the performance of the FM speech recognizers is com-
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parable to that of the conventional MFCC speech recognition systems. Although the proposed
method is inferior to the AM systems, it is confirmed that FM does contain phonetic informa-
tion; further, data-driven temporal filtering technique and the HMM/MLP-tandem approach
enabled the use of phonetic information obtained from FM. The substantial improvement in
the performance of FM from that of AIF as compared to the performance improvement from
MFCC to AM indicate that nonlinear processing is intrinsic to FM features.

3.4.3 Multistream speech recognition experiments

In this section, the performance of the combination of AM and FM processing is evaluated
by performing multistream speech recognition experiments. The combination method of AM
and FM features is described in Section 3.3.

The test set used in this experiment is the same as that used in experiments described in
Section 3.4.2. The performance of the combination method is compared with the perfor-
mances of the AM and FM systems, described in the previous section.

Figure 3.11 shows the word error rates of singlestream speech recognition systems (AM
and FM) and their combination (AFMC).

From the figure, it is confirmed that the combination of AM and FM is efficient for achiev-
ing noise robustness. It should be noted that the combination method outperforms MFCC
systems and conventional AM systems, even in clean environments. Therefore, the various
techniques for speech emphasis should lead to performance improvements.
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Figure 3.10 Word error rate of singlestream speech recognizers as a function of SNR
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For comparison, optimal static weights, ν̄, which are independent of time n, are obtained
by minimizing the squared error as follows:

ν̄ =argmin
ν

∑
i

∑
n

(
x̂i

n −
(
νxi,FMMLP

n + (1− ν)xi,AMMLP
n

))2

, (3.13)

where x̂i
n is the teaching signals, as defined in Section 2.3.

Table 3.1 shows the performance of the static combination method (w̄m) and proposed
dynamic combination method (wm(t)). It is confirmed that the dynamic combination is more
effective, especially in noisy environments. In clean environments, it is observed that the
static weights determined by optimization in Eq. (3.13) give satisfactory results. However,
in realistic environments, the weights of these analyzers change. Therefore, the dynamic
determination of weights is a critical step in achieving noise robustness.

The results suggest that the advantages of each feature stream are dependent on time. It is
considered that dynamic integration is required because noise properties of realistic noise are
varied, and hence, the advantageous feature streams are varied. In the following section, the
relation between noise property and robustness of each stream are examined and discussed.

3.4.4 Complementarity evaluation

In order to investigate the difference in robustness of AM and FM analysis systems, various
artificial noises are defined and used to evaluate the systems.
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Figure 3.11 Word error rate of multistream speech recognizers for noisy speech as a function of SNR
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Table. 3.1 Word error rates of the multistream speech recognition systems that use static
stream weighting (Static; ν̄ in Eq. (3.13)) and dynamic stream weighting (Dynamic; νn in
Eq. (3.12))

Static Dynamic
Clean 1.62 1.48
10 dB 39.45 33.43

Table. 3.2 Word error rates of compared methods in noisy environments (10 dB)

AM FM
wn 54.5 50.5
bpf wn 64.7 97.1
burst wn 50.9 37.1
burst bpf wn 37.1 65.3

The properties of noise considered in this section are listed below.

• Stationary noise or burst noise
• Narrow-Band noise or wide-band noise (white noise)

The following different noise patterns are created by combining these properties;

• White noise (wn)
Full-range white noise.
• Band-pass filtered white noise (bpf wn)

This noise is obtained by applying band-pass filter to the noise “wn.” The central
frequency of a band-pass filter is obtained from uniform random values ranging from
1,000 Hz to 3,000 Hz, and the bandwidth is obtained from uniform random values
ranging from 100 Hz to 2000 Hz.
• Burst noise (burst wn)

White noise of with a duration 250 ms and silence with a duration of 250 ms are
connected alternately.
• Band-pass filtered burst noise (burst bpf wn)

This is obtained by applying band-pass filter (the parameters for filters are same as in
“bpf wn”) to the noise “burst wn.”

The spectrograms of these noises are depicted in Fig. 3.12. Those four noises are added at
10 dB SNR to clean speech data in the test set of CENSREC-1.
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Table 3.2 lists the word accuracies of the AM and FM methods in the tested environments.
From the results, it is observed that the FM analysis has certain disadvantages in the case of
narrow-band noises. However, it is advantageous for full-range noises. In contrast, the AM
analysis is often observed to be degraded under full-range burst noise.

The error rates of each classifier differ significantly, depending on the noise characteristics.
Therefore, it is confirmed that the two classifiers share a complementary relation. Because
burst noise degrades the modulation information of in envelope, the performance of AM rec-
ognizers in the “burst wn” environment was not sufficiently high. FM speech recognizers
work robustly, even when AM features are degraded. It is considered that these complemen-
tarity characteristics of FM features make it possible to achieve robustness in realistic noise
environment.

3.4.5 Reverberant speech recognition experiments

In this section, the performance of the proposed system is evaluated by conducting reverber-
ant digit recognition experiments.

As similar to the previous experiments, the training set used for both the MLP and HMM
was taken from CENSREC-1. Every test set that was used for both the clean environment
test and reverberant environment tests comprised 2002 utterances from 104 speakers. The
sampling rate for all the input signals was fixed at 8000 Hz; hence, the number of filter bank
channels was 14.

Four impulse responses for producing reverberant speech is prepared in order to simulate
the reverb at the following locations:
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Figure 3.12 Spectrograms of selected noise patterns
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• Room (small reverberant room)
• Meeting room
• Silo
• Theater
• Cathedral

Figure 3.13 shows the time characteristics of the reverb calculated by using the expression

R(n) = 10 log10

{∑∞
τ=n(hREV

τ )2∑∞
τ=0(hREV

τ )2

}
, (3.14)

where hREV
τ is the impulse response of the reverb.

The reverberation test set was generated by convoluting the impulse responses to signals
in clean environments. Figure 3.14 shows the spectrograms for clean speech and reproduced
reverberant speech using the impulse response of the silo.

The baseline is the MFCC and energy feature extraction system that is augmented by the
derivation and acceleration of the MFCC and energy. (MFCC E D A; 39 dims.)

All the HMMs and MLPs are trained to be independent of the gender and speaker.
Table 3.3 shows the word error rates of the compared methods in the test set.
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Table. 3.3 Word error rates of compared methods as percentages

MFCC AIF AM FM AFMC
Clean 2.1 10.3 2.5 9.1 1.6
Room 21.1 62.9 13.4 27.8 7.9
Meeting room 65.7 72.3 58.2 55.5 48.0
Silo 73.8 86.5 74.2 73.6 68.6
Theater 76.9 85.9 68.8 78.6 65.0
Cathedral 84.2 98.8 83.2 86.3 82.1
Avg. reverb 64.3 81.3 59.6 64.3 54.3

3.5 Conclusion
In this chapter, the speech recognition system based on data-driven temporal filtering tech-
niques is presented. By performing the speech recognition experiments, it is confirmed that
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Figure 3.14 Spectrograms for clean speech (top) and reverberant speech in silo (bottom)
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frequency modulation (FM) in speech signals contains phonetic information. In the proposed
systems, only the density of zero-crossing points in the signal is analyzed. Therefore, the fea-
tures used in the proposed system do not contain information on amplitude. The evaluation
results show that FM in speech signals also contains phonetic information and that the FM
features can be treated as independent features as well as complemental features.

Furthermore, the efficiency of the combination of AM and FM systems are verified. It
is confirmed that the combination system outperformed all the conventional singlestream
recognizers. The combination system reduced word error by 43.6% at 10 dB SNR.

To evaluate the complementarity of AM and FM features, their performance under artificial
noisy environments are evaluated. The results show that the characteristics of FM features
and AM features are completely different. FM features are considerably robust to wide-band
noise, where AM features are not.

Furthermore, reverberant speech recognition experiments are carried out in order to verify
advantage of the proposed system. It is confirmed by the experiments that the FM analysis
and AM/FM combination system are advantageous for reverberant speech recognition.

Through series of experiments, it is demonstrated that the proposed FM features can
achieve sufficiently high performance when used in singlestream speech recognizers and can
outperform conventional recognizers when used in combination with AM features.

Finally, it is confirmed in this chapter that further improvement in performance of ASR
systems can be achieved by employing high-dimensional signal representations. Although,
in this chapter, the analysis method based on FM is presented, combining other analysis
methods would also be effective.
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Chapter 4

Regularized discriminative models
based on continuous-density
hidden Markov models

In the previous chapter, the MLP-ensemble classifier is introduced in order to prevent the
curse of dimensionality. In this chapter, as another method to construct efficient classifiers,
an HMM-based classification derived by the minimum relative entropy discrimination frame-
work is proposed. Since this chapter only focuses on an acoustic model estimation method,
experiments are carried out by using conventional MFCC features (MFCC E D A described
in Section 2.1.1).

4.1 Introduction
Recently, discriminative training methods for probabilistic models have achieved higher per-
formance than conventional maximum likelihood training methods, even in large vocabulary
continuous speech recognition tasks [Woodland, 2002, McDermott and Katagiri, 2005]. In
the discriminative training methods, probabilistic model parameters are estimated by opti-
mizing a discriminative criterion function. Several methods for discriminative training have
been identified along with choices of performance functions as described in Section 2.2.4.
Although discriminative training methods significantly outperform conventional maximum
likelihood training methods, the training processes still include the risk of overfitting due to
a shortage of available training data.

On the other hand, in discriminative non-probabilistic models, several regularization
techniques are employed in order to avoid overfitting. The support vector machine (SVM)
is one of the most successful discriminative models that utilize regularization techniques
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[Boser et al., 1992, Vapnik, 1999]. The regularization techniques introduce additional terms
that represent how desirable the model parameters are, for the performance function in order
to prevent overfitting. In SVMs, large-margin linear classifiers are obtained by introducing
regularization terms that minimize the L2-norm of weight vectors used in linear classifiers.
Further, it is well known that SVM can prevent the curse of dimensionality.

Regularization techniques are also imported into discriminative training methods for prob-
abilistic models. I-smoothing technique can be interpreted as a regularization technique that
controls the estimated model parameters so that higher likelihood as well as discriminative
performance is ensured [Povey and Woodland, 2002]. Large-margin hidden Markov Models
(LM-HMMs) introduced by Sha et al. [Sha and Saul, 2007] include additional regularization
terms that lead to a decrease in the L2-norm of natural parameters of each Gaussian pdf in
HMMs.

In order to provide probabilistic interpretations of existing regularized discriminative
training methods, the minimum relative entropy discrimination (MRED) framework pro-
posed by Jebara et al. [Jebara, 2001, Jaakkola et al., 2000] *1 is applied to discriminative
training of CD-HMMs. Although MRED has already been applied in regression problems
involving one-class HMMs [Jebara, 2001] and feature selection problems for HMMs
[Valente and Wellekens, 2003], the application in the sequential pattern recognition prob-
lems, i.e., classification problems that handle sequences of continuous vectors as inputs and
sequences of labels as outputs, are not discussed.

In this study, MRED is applied to continuous density HMMs (CD-HMMs). Because the
MRED framework is a Bayesian framework, the author intends to provide novel discrimi-
native perspectives for various problems in speech recognition, including model selection,
adaptation, and feature extraction, by applying MRED to CD-HMMs. In this thesis, as a first
step, an MRED-based discriminative training method is discussed.

The rest of this chapter is organized as follows. In Section 4.2, the MRED framework
is described. In Section 4.3, an approximation method for MRED is proposed in order to
apply MRED to CD-HMMs. An example of optimization method is presented in Section 4.4.
Experimental setup is presented in Section 4.5, and the results are discussed in Section 4.6.

4.2 Minimum relative entropy discrimination (MRED)
In this section, at first, a general formulation of regularized discrimination is introduced by
considering constrained convex optimization. Then, MRED is described as a natural exten-

*1 Conventionally, this framework is also known as “maximum entropy discrimination.” However, the author
uses a more specific notation, i.e., “minimum relative entropy discrimination,” because the maximum entropy
property can only be acquired when specific prior pdfs are used. The author of [Jebara, 2001] also uses this
specific notation in several papers.
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sion of the general formulation.
This section begins with a definition of a parametric discriminant function D(Xi; Θ),

which indicate the discriminative performance of given parameter Θ with respect to an in-
put example Xi. By introducing a performance threshold ξi (a.k.a. functional margin) with
respect to ith input example, the focus of the problem is to estimate Θ so thatD(Xi; Θ) ≥ ξi.

Using the discriminant function D(Xi; Θ), all regularized discrimination problems can be
written under a convex optimization framework in the following manner:

minimize
Θ,ξ

R(Θ) +
∑

i

L(ξi),

subject to D(Xi; Θ)− ξi ≥ 0, ∀i.
(4.1)

Here, R(Θ) is a regularization function, and L(ξi) is a loss function that returns a positive
value when the performance threshold ξi is lower than a desirable performance. The regular-
ization function R(Θ) is designed to represent the illness of the parameter Θ.

In this formulation, when Xi is misclassified, D(Xi; Θ) is less than 0, and ξi is set at
ξi = D(Xi; Θ) in order to satisfy the constraint by slacking the constraint by ξi. Therefore,
ξi is termed “slack variable.” Because the discriminant function D(Xi; Θ) is completely
ignored if ξi is determined freely, ξi is controlled by monotonically increasing loss function
L(ξi).

Although, the composition of the loss function and the discriminant function L(D(Xi; Θ))
is treated as a cost function to be minimized in conventional discriminative training methods,
the discriminant function and the loss function are treated separately in the convex optimiza-
tion scheme. Further, in order to maintain the convexity, L, D, and R must be chosen from
convex functions.

Recently, Jebara introduced MRED as a probabilistic interpretation of the previous for-
mulation in order to properly model the variations in the estimation results, similar to that
achieved in Bayesian inference methods [Jebara, 2001]. In MRED, by considering all vari-
ables as random variables, the effect of regularization and loss can be interpreted by using
prior probability distribution function (pdf) of model parameters and slack variables. Further,
the regularization function R(Θ) and the loss function L(ξi) in Eq. (4.1) are represented by
the Kullback-Leibler divergence (KL divergence or relative entropy) between the prior pdf
P 0(Θ, ξ) and a posterior pdf P (Θ, ξ), as follows:

minimize
P (Θ,ξ)

KL[P (Θ, ξ)||P 0(Θ, ξ)],

subject to
〈
D(Xi; Θ)− ξi

〉
P (Θ,ξ)

≥ 0, ∀i,
(4.2)

where 〈f(x)〉P (x) denotes the expectation of f(x) with respect to P (x), i.e. 〈f(x)〉P (x)
def=∫

x
P (x)f(x)dx; KL[f(x)||g(x)], the KL divergence of g(x) from f(x), i.e. KL[f(x)||g(x)] def=

〈log f(x)− log g(x)〉f(x).
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A comparison with the preceding formulation (Eq. (4.1)) shows that posterior pdfs of
model parameters P (Θ) and slack variables P (ξ) are optimized so that the expectations of
discriminant functions are larger than the expectations of the corresponding slack variable.

Figure 4.1 shows a geometric interpretation of the MRED optimization. As shown in Fig-
ure 4.1, all possible pdfs can be embedded into a simplex in a Hilbert space where inner
products (f, g) are defined as

∫
x

f(x)g(x)dx. Since the discriminative constraints are formu-
lated by using expectation, these constraints can be regarded as linear constraints, regardless
of a choice of a discriminant function, in the Hilbert space. Further, due to the convexity
of the KL divergence, the optimization can be assumed as a convex optimization over the
Hilbert space. One advantage of the convex optimization scheme is that the MRED solu-
tion can also be obtained by solving a Wolfe dual problem. The Wolfe dual problem of the
primary problem (Eq. 4.2) is expressed as follows:

maximize
α

J(α), subject to αi ≥ 0 ∀i, (4.3)

Feasible region

Model set

KL[P(Θ, ξ) || P
0
(Θ, ξ)]

P
0
(Θ, ξ)

P(Θ, ξ)

Figure 4.1 Geometric interpretation of the MRED optimization in a Hilbert space
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where

J(α) =− log Z(α),

Z(α) =

〈
exp

[∑
i

αi
(
D(Xi; Θ)− ξi

)]〉
P 0(Θ,ξ)

.
(4.4)

Further, the optimal posterior pdf can be expressed by using the Lagrange multipliers α
def=

{αi|∀i} as follows:

P (Θ, ξ|α) =
1

Z(α)
P 0(Θ, ξ) exp

[∑
i

αi
(
D(Xi; Θ)− ξi

)]
. (4.5)

Detailed derivations of the posterior pdf and the dual-objective function are described in
Appendix A.

The optimal Lagrange multipliers α̂ can be obtained as a solution of the optimization prob-
lem (Eq. (5.11)), and then The optimal P (Θ, ξ|α̂, Q̂) is obtained by substituting α with the
optimal Lagrange multipliers.

4.3 MRED for speech recognition
In order to apply MRED to speech recognition problems, discussions on the discriminant
function D are presented at first. Then, the closed-form expression of the performance func-
tion J(α) in Eq. (5.11) is obtained by finding integrals with conjugate prior pdfs.

4.3.1 Discriminant function

Although there are many choices for the discriminant functions (e.g., MMI [Bahl et al., 1986],
MCE [McDermott and Katagiri, 1997], or MPE [Povey and Woodland, 2002]), the following
MCE-type discriminant function is chosen:

D(Xi; Θ) = log
P (Xi, li|Θ)

maxl 6=li P (Xi, l|Θ)
, (4.6)

where

P (Xi, l|Θ) =P (l)
∑

q∈S(l)

∑
m

∏
n

Pqn−1,qn
ρqn,mn

N (xi
n|µG(qn,mn), RG(qn,mn))

=P (l)
∑

q∈S(l)

∑
m

P (q, m, Xi|l, Θ).
(4.7)

Here, q = {q1, q2, · · · } is a state sequence, m = {m1,m2, · · · } is a mixture component
sequence, and G(s,m) is the numbering function that indicate the index of the Gaussian as-



54 Chapter 4 Regularized discriminative models based on CD-HMMs

sociated with mth mixture component in sth HMM state. The independency between param-
eters Θ and the label sequence l is assumed since the objective of this chapter is to estimate
acoustic model parameters.

Here, the softmax function defined in Eq. (2.34) is introduced with η = 1 in order to make
tractable max function in the previous discriminant function. The approximated discriminant
function is as follows:

D(Xi; Θ) ≈ log P (Xi, li|Θ)− log
∑
l 6=li

P (Xi, l|Θ)

= log
∑

q∈S(li)

∑
m

P (q, m,Xi, li|Θ)− log
∑
l6=li

∑
q∈S(l)

∑
m

P (q,m, Xi, l|Θ).

(4.8)

Since the summation over all possible erroneous label sequences l 6= li is intractable in
many cases, the lattice-based representations of error hypothesis are introduced. Examples of
lattices are illustrated in Figure 4.2. Since lattices restrict possible word sequences, lattices
can also be used to restrict possible state sequences *2.

By introducing the lattice-based representations of the correct label sequence Ai and incor-

/sil/
n = [0:14]

/a/
n = [14:22]

/e/
n = [14:24]

/k/
n = [22:30]

/q/
n = [24:30]

/t/
n = [22:25] /a/

n = [25:35]

/a/
n = [30:36]

/a/
n = [24:36]

. . .

. . .

/sil/

. . .

/a/ /k/ /e/ /g/

a) incorrect label sequences

b) correct label sequence

Figure 4.2 Examples of lattice-based representations of (a) incorrect label sequences, and
(b) correct label sequence

*2 In these examples, time alignment information is specified in the lattice (a). In such cases, possible state
sequences are more restricted.
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rect label sequences Ãi, the approximated discriminant function can be expressed as follows:

log
∑

q∈S(li)

∑
m

P (q, m, Xi, li|Θ)− log
∑
l 6=li

∑
q∈S(l)

∑
m

P (q, m, Xi, l|Θ)

≈ log
∑

q∈S(Ai)

∑
m

P (q, m, Xi,L(q)|Θ)

︸ ︷︷ ︸
L(Xi,Ai;Θ)

− log
∑

q∈S(Ãi)

∑
m

P (q, m, Xi,L(q)|Θ)

︸ ︷︷ ︸
L(Xi,Ãi;Θ)

def= D̃(Xi, Ai, Ãi; Θ)

(4.9)

where S(A) is another parametrization of the S(l) that returns a set of possible state se-
quences with respect to the given lattice A, and L(q) is a label sequence corresponding to the
given state sequence q.

Conventionally, lattices are obtained as interim results of decoders. However, since the
lattices obtained from decoders represent hypothesis label sequences, these lattices often in-
clude the correct label sequence. Therefore, the lattice-based representation of incorrect label
sequences Ãi is obtained by removing the correct label sequence from these lattices. The re-
moving operation can be performed by using difference operation for finite-state transducers
[Allauzen et al., 2007].

By exploiting the Jensen’s inequality, the lattice-based log-likelihood function L can be
expressed as follows:

L(Xi, A; Θ) = log
∑

q∈S(A)

∑
m

P (q,m, Xi,L(q)|Θ)

= log
∑

q∈S(A)

∑
m

Q(q, m)
P (q, m, Xi,L(q)|Θ)

Q(q, m)

=max
Q

∑
q∈S(A)

∑
m

Q(q,m) log
P (q, m,Xi,L(q)|Θ)

Q(q, m)

=max
Q

∑
q∈S(A)

∑
m

Q(q,m) log P (q,m, Xi,L(q)|Θ)−H[Q(q,m)]

def= max
Q
L̃(Xi, A; Θ, Q)

(4.10)

where H[.] is the entropy functional, defined as follows:

H[Q(q,m)] = −
∑

q

∑
m

Q(q,m) log Q(q, m). (4.11)

By substituting this representation of log-likelihood (Eq. (4.10)) and the lattice-based dis-
criminant function (Eq. (4.9)) into the primary problem (Eq. (4.2)), the following expression
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of the primary problem is obtained.

minimize
P (Θ,ξ)

KL[P (Θ, ξ)||P 0(Θ, ξ)],

subject to
〈

max
Q
L̃(Xi, Ai; Θ, Q)−max

Q̃
L̃(Xi, Ãi; Θ, Q̃)− ξi

〉
P (Θ,ξ)

≥ 0 ∀i.

(4.12)

In order to make integration tractable, the expectation of maxima is approximated by the
maximum of the expectation, as follows:

minimize
P (Θ,ξ)

KL[P (Θ, ξ)||P 0(Θ, ξ)],

subject to max
Q

〈
L̃(Xi, Ai; Θ, Q)

〉
P (Θ,ξ)

−max
Q̃

〈
L̃(Xi, Ãi; Θ, Q̃)

〉
P (Θ,ξ)

−
〈
ξi
〉

P (Θ,ξ)

≥ 0, ∀i.
(4.13)

Here, by introducing the infinite set Qi def= {Q̃i
1, Q̃

i
2, · · · , Q̃i

o, · · · } of all possible Q̃ with
respect to ith training datum, the above primary problem can be expressed as follows:

minimize
P (Θ,ξ)

KL[P (Θ, ξ)||P 0(Θ, ξ)],

subject to max
Q

〈
L̃(Xi, Ai; Θ, Q)

〉
P (Θ,ξ)

−
〈
L̃(Xi, Ãi; Θ, Q̃i

o)
〉

P (Θ,ξ)
−
〈
ξi
〉

P (Θ,ξ)
≥ 0,

∀i,∀o.
(4.14)

The optimal point of this primary problem is defined by introducing a set of Lagrange
multiplier α

def= {αi
o|∀i,∀o}, as follows:

P (Θ, ξ|α, Q̂) ∝P 0(Θ, ξ) exp

{∑
i

∑
o

αi
o

(
L̃(Xi, Ai; Θ, Q̂i)− L̃(Xi, Ãi; Θ, Q̃i

o)− ξi
)}

,

Q̂i =argmax
Q

〈
L̃(Xi, Ai; Θ, Q)

〉
P (Θ,ξ)

.

(4.15)

Further, the dual-objective function of the above primary function is as follows:

maximize
α

J(α, Q̂) = − log Z(α, Q̂),

subject to αi
o ≥ 0 ∀i ∀o,

(4.16)

where

Z(α, Q̂) =

〈
exp

{∑
i

∑
o

αi
o

(
L̃(Xi, Ai; Θ, Q̂i)− L̃(Xi, Ãi; Θ, Q̃i

o)− ξi
)}〉

P 0(Θ,ξ)

.

(4.17)
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Here, Q̂ is defined as Q̂ = {Q̂1, Q̂2, · · · , Q̂i, · · · }. The infinite constraints appeared in the
dual optimization formulation can be handled by employing a cutting plane method (de-
scribed in Section 4.4). Finally, the tractable dual-objective function is obtained. The next
section derives a closed-form expression of the objective function by introducing conjugate
prior pdfs.

4.3.2 Prior pdfs and a closed-form expression of the objective function

Here, in order to derive a closed-form expression, the independence of each parameter is
assumed as follows:

P 0(Θ, ξ) def=
∏

i

P 0(ξi)×
∏
g

P 0(µg,Rg)×
∏
s

P 0(ρs)×
∏
s

P 0(Ps), (4.18)

where Ps denotes the sth row in a transition matrix P . By substituting Eqs. (4.10) and (4.18)
into Eq. (4.17), the following decomposed objective function is obtained.

Z(α, Q̂) =
∏
g

ZEMIS
g (α, Q̂)×

∏
s

ZMIX
s (α, Q̂)×

∏
s

ZTR
s (α, Q̂)×

∏
i

JSLACK
i (α, Q̂),

J(α, Q̂) =− log Z(α, Q̂)

=
∑

g

JEMIS
g (α, Q̂) +

∑
s

JMIX
s (α, Q̂) +

∑
s

JTR
s (α, Q̂) +

∑
i

JSLACK
i (α, Q̂).

(4.19)

The following paragraphs find the integral for each term in the above decomposed objective
function.

■Gaussian parameters (JEMIS) In order to obtain a closed-form expression of the objec-
tive function, conjugate pdfs are used as prior pdfs of the model parameters. The conjugate
pdfs for the parameters of Gaussian pdfs (with diagonal covariance matrices *3) are repre-
sented by the normal-gamma distribution N ◦ G(.) as follows:

P 0(µg,d, rg,d) = N ◦ G(µg,d, rg,d|µ0
g,d, γ

0
g,d, η

0
g , β0

g,d), (4.20)

where µg,d and rg,d are the mean and the variance of dth dimension of gth Gaussian distri-
bution. The normal-gamma distribution is defined as follows:

N ◦ G(µ, r|µ0, γ0, η0, β0) ∝ (β0)η0

Γ (η0)
(r)η0−1/2 exp

{
−β0r − rγ0

2
(µ0 − µ)2

}
. (4.21)

*3 By using the normal-Wishart distribution [Bishop, 2006] as a prior pdf, full covariance Gaussian pdfs are also
tractable in this method.
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By using this conjugate prior pdf, the integration over the model parameters in JEMIS(α, Q̂)
in Eq. (4.19) can be solved as follows:

JEMIS
g (α, Q̂) =

∑
d

JEMIS
g,d (α, Q̂)

JEMIS
g,d (α, Q̂) =

γg(α, Q̂)
2

log {2π} − log
{

Γ(ηg(α, Q̂))
}

+
1
2

log
{

ξg(α, Q̂)
}

+ ηg(α, Q̂) log
{

rg,d(α, Q̂)
}

,

(4.22)

where the followings are parameters of posteriors, as functions of α and Q̂, as follows:

ηg(α, Q̂) =η0
g +

∆0
g(α, Q̂)

2
,

γg(α, Q̂) =γ0
n + ∆0

g(α, Q̂),

µg,d(α, Q̂) =
γ0

gµ0
g,d + ∆1

g,d

γ0
g + γg(α, Q̂)

,

βg,d(α, Q̂) =β0
g,d +

1
2

(
γ0

g

(
µ0

g,d

)2
+ ∆2

g,d − γg(α, Q̂)µg,d(α, Q̂)2
)

,

(4.23)

Here, the followings are difference between statistics obtained from Qi and Q̃i
o, as follows:

∆0
g(α, Q̂) =

∑
i

∑
o

αi
o

(
χ0

g(X
i; Q̂i)− χ0

g(X
i; Q̃i

o)
)

,

∆1
g,d(α, Q̂) =

∑
i

∑
o

αi
o

(
χ1

g,d(X
i; Q̂i)− χ1

g,d(X
i; Q̃i

o)
)

,

∆2
g,d(α, Q̂) =

∑
i

∑
o

αi
o

(
χ2

g,d(X
i; Q̂i)− χ2

g,d(X
i; Q̃i

o)
)

,

(4.24)

where g is an index for Gaussian distributions, d is a dimensionality index, and
χ0(Xi; Q), χ1(Xi;Q), and χ2(Xi; Q) are occupancy, 1st-order statistics, and 2nd-
order statistics of the feature vector sequence Xi and the hidden variable distribution Q with
respect to dth dimension of the nth Gaussian pdf *4, defined as follows:

χ0
g(X

i; Q) =
∑

q

∑
m

Q(q, m)
∑

n

1(qn, g),

χ1
g,d(X

i; Q) =
∑

q

∑
m

Q(q, m)
∑

n

1(qn, g)xi
n,d,

χ2
g,d(X

i; Q) =
∑

q

∑
m

Q(q, m)
∑

n

1(qn, g)
(
x

(i)
n,d

)2

(4.25)

*4 Although this definition of the sufficient statistics functions is different from the definition in Chapter 2, both
of the definitions are compatible, and calculated by the forward-backward algorithm.
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∆0,∆1, and ∆2 are the weighted sums of the differences between the sufficient statistics
obtained from the reference lattice Ai and the sufficient statistics obtained from the com-
petitor lattice Ãi. The differences in the sufficient statistics are also used in conventional
discriminative training methods in which all the difference statistics are accumulated with
the same weight.

■Mixture weights (JMIX) / transition probability (JTR) Similar to the case of the Gaus-
sian parameters, the conjugate prior pdfs are introduced as P 0(ρs) and P 0(Ps). Since
mixture weight vectors and rows in transition probability matrices can be assumed as dis-
crete pdfs, the Dirichlet distribution is suitable as a conjugate prior pdf of these parameters.
Therefore, the Dirichlet pdfs are introduced as the prior pdfs for Ps

def= {Ps,s′ |∀s′} and

ρs
def= {ρs,m|∀m} as follows:

P 0(ρs|φ
0
s) =

Γ(
∑

m φ0
s,m)∏

n Γ(φ0
s,m)

∏
m

(ρs,m)φ0
s,m ,

P 0(Ps|ϕ0
s) =

Γ(
∑

s′ ϕ0
s,s′)∏

n Γ(ϕ0
s,s′)

∏
m

(πs,s′)ϕ0
s,s′ .

(4.26)

By substituting (4.26) into (4.17), the following closed-form expressions are obtained:

ZMIX
s (α, Q̂) ∝

Γ
(∑

m φs,m(α, Q̂)
)

∏
m Γ

(
φs,m(α, Q̂)

) ,

ZTR
s (α, Q̂) ∝

Γ
(∑

s′ ϕs,s′(α, Q̂)
)

∏
s′ Γ

(
ϕs,s′(α, Q̂)

) .

(4.27)

Here, φs,m(α, Q̂) and ϕs,s′(α, Q̂) are parameters of the posterior pdfs, obtained as follows:

φs,m(α, Q̂) =φ0
s,m + ∆MIX

s,m(α, Q̂)

ϕs,s′(α, Q̂) =ϕ0
s,s′ + ∆TR

s,s′(α, Q̂)
(4.28)

where

∆MIX
s,m(α, Q̂) =∆0

G(s,m)(α, Q̂),

∆TR
s,s′(α, Q̂) =

∑
i

∑
o

αi
o

(
χTR

s,s′(Xi; Q̂i)− χTR
s,s′(Xi, Q̃i)

) (4.29)

By using the above expressions, the corresponding terms of the objective function can be
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expressed as follows:

JMIX
s (α, Q̂) =− log Γ

(∑
m

φs,m(α, Q̂)

)
+
∑
m

log Γ
(
φs,m(α, Q̂)

)
,

JTR
s (α, Q̂) =− log Γ

(∑
s′

ϕs,s′(α, Q̂)

)
+
∑
s′

log Γ
(
ϕs,s′(α, Q̂)

)
.

(4.30)

■Slack variables (JSLACK) In order to utilize a hinged linear penalty function as used in
soft-margin SVMs, an exponential distribution is used as a prior pdf of slack variables, as
follows:

P 0(ξi) =
1
c0

exp
{
−c0

(
ξi − δi

)}
, (ξi ≤ li). (4.31)

Here, c0 is a hyper parameter that adjusts a proportion of penalty. δi is a hyper parameter that
represents a threshold of the hinged linear penalty function. Figure 4.3 shows the likelihood
function and the log-likelihood function of this prior pdf (δi = 1, c0 = 2.0).

Similar to the cases of the model parameters, the integration in ZSLACK
i (α, Q̂) =

exp(−JSLACK
i (α, Q̂)) in Eq. (4.19) is analytically solved by using this prior distribution, as

follows:

JSLACK
i (α, Q̂) =−

∑
o

αi
o

(
∆SHIFT(Q̂, i, o)− δi

)
+ log

(
c0 −

∑
o

αi
o

)
,

∆SHIFT(Q̂, i, o) =H[Q̂i]−Hq[Q̃i
o] +

∑
q∈S(Ai)

log P (L(q))−
∑

q∈S(Ãi)

log P (L(q)).
(4.32)

Figure 4.3 Probability density function defined in Eq. (4.31) (δi = 1, c0 = 2.0)
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4.3.3 Parameter update

By substituting the above prior settings into Eq. (4.15), the following posterior pdf is ob-
tained.

P (Θ|α, Q̂) =
∏
g

N ◦ G(µg,d, rg,d|µg,d(α, Q̂), γg,d(α, Q̂), ηg(α, Q̂), βg,d(α, Q̂))

×
∏
s

Dir(ρs|φs(α, Q̂))×
∏
s

Dir(Ps|ϕs(α, Q̂))
(4.33)

where

φs(α, Q̂) =[φs,1(α, Q̂), · · · , φs,m(α, Q̂), · · · ]T,

ϕs(α, Q̂) =[ϕs,1(α, Q̂), · · · , ϕs,s′(α, Q̂), · · · ]T.
(4.34)

Here, Dir(.|.) denotes the pdf of the Dirichlet distribution, defined as follows:

Dir(ρ|φ) =
Γ (
∑

d′ φd′)∏
d′ Γ (φd′)

∏
d

(ρd)
φd . (4.35)

As mentioned above, the posterior pdf P (Θ) is obtained by substituting α with the optimal
α̂ into Eq. (4.33). It should be noted that this posterior pdf is determined so that the differ-
ences between the log-likelihoods of the correct label sequence and incorrect label sequences
are sufficiently large. Although the Student’s t-distribution is often used as the expectation of
the likelihood function over the posterior pdf in Bayesian approach, Student’s t-distribution
may be inconsistent since the posterior pdf is obtained under the constraints with respect to
log-likelihood function. Therefore, the maximum-a-posteriori parameters are used, in which
the modes of posterior distributions serve as the estimated parameters.

4.3.4 Empirical prior setting

This section focuses on the determination of hyper parameters. In MRED, the empirically
estimated hyper parameters are often used in conjugate priors. Here, in order to guarantee
the performance of estimated models, hyper parameters are defined by using the sufficient
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Algorithm 1 Iterative optimization algorithm of Q̂ and α

1: O ← 0
2: loop
3: optimize Q̂ with the given αi

o (o < O) where αi
o = 0 (o ≥ O)

4: O ← O + 1
5: determine Q̃i

o=O

6: optimize αi
o(o ≤ O) with the given Q̂

7: end loop

statistics obtained by the maximum-likelihood parameters, as follows:

γ0
g =

∑
i

χ0
g(X

i, li; ΘMLE),

µ0
g,d =

∑
i χ1

g,d(X
i, li; ΘMLE)

γ0
g

,

αg =
1
2
γ0

g

βg,d =
1
2

∑
i

χ2
g,d(X

i, li; ΘMLE)− αn

(
µ0

g,d

)2
,

(4.36)

where ΘMLE is a parameter set obtained by using the maximum likelihood procedure, the
definitions of χ0

g(X
i, li; ΘMLE), χ1

g,d(X
i, li; ΘMLE), and χ2

g,d(X
i, li; ΘMLE), are the same as

those in Eq. (2.26).

4.4 Optimization
In this section, an optimization method for the objective function is discussed and proposed.
Since the dual-optimization problem defined in Eq. (4.17) involves two different optimiza-
tions, that is, the optimization with respect to α and the optimization with respect to Q̂, the
optimization must be solved by using an iterative scheme. Further, due to the infinite con-
straints in the primary problem (Eq. (4.14)), the number of Lagrange multipliers αi

o is infinite.
In order to handle the infinite constraints, a cutting plane method [Tsochantaridis et al., 2005]
is adapted to this iterative iteration scheme. The Algorithm 1 shows an iterative optimization
algorithm based on a cutting plane method.

■Q̂-optimization In order to prevent combinatorial explosion of the discrete pdf Qi, suf-
ficient statistics χ(Xi; Qi) def= {χ0

g(X
i; Qi), χ1

g,d(X
i; Qi), χ2

g,d(X
i;Qi)|∀g,∀d} is used to

represent Qi. Because the Q̂-optimization with fixed α is equivalent to the maximum like-
lihood optimization of Q̂ with fixed Θ′, the optimal sufficient statistics can be obtained by
using the forward-backward algorithm as in the EM algorithm.
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■Determination of Q̃i
o A cutting plane method is performed by finding and considering a

constraint that is considered as the most critical constraint [Tsochantaridis et al., 2005]. The
most critical constraint can be obtained by using the current hypothesis of the model (α, Q̂),
as follows:

Q̃i
o =argmin

Q′
max

Q

〈
L̃(Xi, Ai; Θ, Q)

〉
P (Θ,ξ|α,Q̂)

−
〈
L̃(Xi, Ãi; Θ, Q′)

〉
P (Θ,ξ|α,Q̂)

−
〈
ξi
〉

P (Θ,ξ|α,Q̂)

=argmax
Q′

〈
L̃(Xi, Ãi; Θ, Q′)

〉
P (Θ,ξ|α,Q̂)

.

(4.37)

As shown in the above equation, the optimal Q̃i
o corresponding to the most critical con-

straints can be obtained by maximizing log-likelihood with respect to the lattice Ãi. Thus,
the sufficient statistics, which represents Q̃i

o, can be obtained by using the forward-backward
algorithm.

■α-optimization The α optimization can be solved by using several optimization methods.
For example, a gradient-based method can be used for this optimization. Because the α-
optimization is a convex optimization when Q̂ is fixed, this optimization is ensured to reach
the global optimum.

The detailed implementation of this optimization is discussed in Appendix B.

4.5 Experimental setup
In the experiments, 3,696 sentences from the TIMIT database [Lamel et al., 1986] are used
for model training, and 192 sentences are used for evaluation. All the training and test
speeches are parametrized by Mel-frequency cepstral coefficients (MFCC) and its energy
augmented by their derivatives and accelerations (MFCC E D A; 39 dims.) computed at a
10 ms frame shift with 25 ms window size (cf. Section 2.1.1).

As described in [Lee and Hon, 1989], we used 48 phonetic classes for the training and de-
coding, and the phoneme accuracies were calculated by using 39 broader phonetic categories.
A bi-gram (bi-phoneme) grammar model is applied during all decoding processes. Proportion
for grammar models is set at 5.

For comparison, the discriminative training methods are performed by optimizing the
linear-loss MCE criterion, and the MMIE criterion. In general, MCE is not optimized by
the EBW method. However, because large number of similarities in the implementation of
our method and those of EBW method, the MCE system is optimized by the EBW method.
The baseline and initial models for MCE/EBW and MMIE were trained by a maximum like-
lihood Viterbi training procedure.
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Table. 4.1 Phoneme error rates of the compared methods

Method 1 mix. 2 mix.
MLE 42.2 38.8

MCE/EBW (1-best) 40.4 –
MRED (1-best) 39.5 –
MMIE (Lattice) 39.2 36.7
MRED (Lattice) 38.9 36.0

4.6 Discussions
Table 4.1 shows the phoneme error rates of the compared methods. It is confirmed that MRED
outperforms the conventional MCE/EBW method and the MMIE method. In the table, the
best results obtained by varying the number of iterations are presented. However, it is con-
firmed that continuing iterations declines the performance of the MCE models. Contrastingly,
it is confirmed that the performances of MRED models rarely decay with iterations.

It is considered that regularization techniques by employing empirical priors for model
parameters lead to improvements in phoneme accuracy. Although, in general, the use of
priors increases the number of hyper parameters to be tuned in advance, the use of empirical
priors does not necessitate that kind of tunings.
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Chapter 5

Feature augmentation based on
hidden Markov kernel machines

This chapter discusses on regularized discrimination of high-dimensional features obtained
by kernel methods. Recently, HMM/ MLP-tandem approaches are also regarded as a kernel-
like transformation in several articles [Collobert and Bengio, 2004, Malkin et al., 2009]. Al-
though the MLP-based approach is accepted widely in ASR, kernel based methods are not
discussed enough since kernel based methods necessitate modifications in training proce-
dures. In this chapter, the author pointed out that a kernel based method can be obtained
by using the training method described in the previous chapter (Chapter 4). Furthermore, a
simple Viterbi-path based approximation method of MRED is presented for computational
efficiency.

5.1 Introduction
Hidden Markov models (HMMs) have been widely used in classification problems of se-
quential data, such as speech recognition, speaker recognition, handwriting recognition, and
gesture recognition because of their extensibility. In such classification problems, nonlinear
classification techniques are essential because feature vectors are not linearly separable in
the natural feature space. To deal with such nonseparable sequences, kernel-based nonlinear
classification techniques have been especially developed based on support vector machines
(SVMs) [Boser et al., 1992, Vapnik, 1999].

Several approaches can be used for carrying out kernel-based classification of se-
quential data based on SVMs [Tsochantaridis et al., 2005, Ganapathiraju et al., 2004,
Joder et al., 2008], such as an approach that involves the use of SVMs with a kernel
function that directly handles sequential data (sequential kernel) [Joder et al., 2008,
Shimodaira et al., 2002, Cuturi et al., 2007], and SVM/ HMM hybrid approaches
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[Huang et al., 2006, Ganapathiraju et al., 2000] that involve the use of SVMs as static
classifiers for the fixed alignment segments determined by HMMs. However, these
approaches cannot explicitly hold the HMM representation, which makes it difficult to
integrate them to large-scale systems straightforwardly. Because of the abovementioned lack
of the conventional SVM-based approaches, HMM-based approaches are still used in some
sequential pattern classification problems, especially in speech recognition. In order to carry
out a nonlinear classification, the current state-of-the-art HMM-based sequential classifiers
introduce several discriminative training methods to HMMs as described in Section 2.2.4,
and use Gaussian mixture models (GMMs) with a large number of mixture components
as emission probability density functions (pdfs) of HMMs. Since GMMs are capable of
representing arbitrary pdfs, increasing the number of mixture components in GMMs could,
in principle, lead to optimal nonlinear classification. However, the risk of local optima and
overfitting also arises with an increase in the number of mixture components. The objective
of this chapter is to prevent these risks by enhancing the emission pdfs of HMMs based on
kernel methods.

In this chapter, a novel kernel machine is proposed for the classification of sequential data.
Since the proposed method is formulated as a natural extension for conventional HMMs,
our method can explicitly model the transition of hidden states behind the observed vectors.
Therefore, the proposed method can be applied to many applications developed with conven-
tional HMMs straightforwardly, especially for speech recognition. In addition, the proposed
method can avoid the overfitting and local optima problems by using kernel-based nonlinear
classification instead of mixture models.

Preliminary experiments that involved a phoneme classification task of speech data is per-
formed to show the effectiveness of our proposed method. It should be noted that kernel-
based methods for classification require, in principle, a computational cost of O(p3) for
training and O(pq) for evaluation, where p and q denote the numbers of frames in the train-
ing dataset and test dataset, respectively. Hence, evaluations on current standard corpora are
prohibitive without any approximation, even if a small-sized corpus (e.g., TIMIT) is used for
training and evaluation. In this chapter, as an initial attempt, the exact performance of the
proposed kernel machines is focused by using a subset of the standard corpus (TIMIT). Since
many approximation techniques aimed at the acceleration of kernel-based methods have been
developed in the machine learning community [Kashima et al., 2009], it is considered that
the proposed method can be scalably applied to large-scale corpora by applying appropri-
ate approximation techniques. Therefore, a phoneme classification problem is chosen in our
evaluations as a normal sequential pattern classification problem.

The remainder of this chapter is organized as follows. Section 5.2 briefly describes how
kernel methods achieve nonlinear classification without mixture models. Section 5.3 defines
the models used in the proposed method and a discriminant function that is the foundation for
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the proposed method. Section 5.4 describes a parameter estimation method and a method for
introducing kernel techniques into the estimation process of the model parameters. In Section
5.5, the preliminary results of isolated phoneme classification experiments are presented and
discussed.

5.2 Reproducing kernel Hilbert spaces
In this section, a method used to carry out nonlinear classification without using mixture
models is described conceptually. The detailed formulations required for the application of
this method to HMMs are described in Sections 5.3 and 5.4.

Conventional classifiers based on probabilistic models use pdfs P (x) in the input feature
space x ∈ R

D as models of feature vectors. Although the classification boundaries con-
structed by Gaussian pdfs are quadratic surfaces in the input feature space RD, boundaries
with higher-order nonlinearities are required in most applications. Therefore, to enhance the
representation of emission pdfs, mixtures of Gaussian pdfs are often used to construct accu-
rate boundaries. However, the use of mixtures might introduce the risk of local optima and
overfitting.

The objective of this chapter is to construct classifiers in a higher-dimensional space K def=
{φ(x)|x ∈ X}. It is well known that if an appropriate nonlinear warping function φ is
given, the optimal classification boundary can be represented as a linear function in a higher-
dimensional space K. Therefore, simple pdfs obtained without using mixture models (e.g.,
exponential distributions) can be used as models for warped feature vectors, as shown in
Figure 5.1.

By using an appropriate kernel function K : (X ,X ) → R, there exists φ, which satisfies
K(x,y) = φ(x)Tφ(y). Therefore, φ is not defined explicitly in general. If all operations in
the higher-dimensional space K can be written by using inner products in K, the explicit rep-

R
D: input feature space K: high-dimensional 

       feature spaceφ(x)
P(x | A)

P(x | B)

P(φ(x) | B)
P(φ(x) | A)

Figure 5.1 Basic concept of using probability density functions in reproducing kernel Hilbert space
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resentation and computation of φ can be omitted by substituting φ(.)Tφ(.) with K(., .). The
higher-dimensional spaceK defined by the kernel function K is called the reproducing kernel
Hilbert space (RKHS). SVMs, which are formulated as linear classifiers, achieve nonlinear
classification by considering linear classification in an RKHS.

As an example, the average of warped feature vectors φ(xi) in a dataset
{
φ(xi)|i ∈ [1..N ]

}
is discussed. The computation of the inner product between the average and an input vector
φ(x) can be expressed by using the kernel function K as follows:

φ(x)T
(

1
N

N∑
i=1

φ(xi)

)
=

1
N

N∑
i=1

K(x, xi). (5.1)

Here, because of the summation (
∑N

i=1) over K, the loop computation and storage attributed
to all vectors xi in the dataset are essential for kernel methods. This is the main cause of
the computational complexity in kernel-based methods. However, several methods to elim-
inate this loop computation can be identified if an appropriate kernel function K is chosen
[Kashima et al., 2009, Freitas et al., 2006].

5.3 Hidden Markov models with log-linear emission pdfs
In this section, a classifier is formulated by introducing HMMs as generative models and a
discriminant function that indicates the classification performance of the models.

Model formulation described in this section includes explicit representation of feature
warping function φ. Therefore, the straightforward implementation of the models described
in this section might be impossible because the number of dimensions of φ(x) might be in-
finite in general RKHSs. This problem is resolved by introducing a training method that can
avoid the use of explicit representation of φ(x); this method is described in Section 5.4.

5.3.1 Definition of discriminant function

Let X =
{
Xi|i ∈ [1..N(X )]

}
and L =

{
li|i ∈ [1..N(L)]

}
be sets of training data, where

N(X ) = N(L) is the number of examples in the training dataset. Xi is a sequence of
D-dimensional feature vectors, i.e., Xi = {xi

1, · · · , xi
n, · · · |xi

n ∈ RD}, and li is the corre-
sponding label (phoneme or word) sequence (classifier outputs), i.e., li = {li1, li2, · · · }.

Conventional HMM-based sequential pattern classifiers can be used to obtain a classifica-
tion result l̂ of an input feature sequence X by solving the following search problem:

l̂ = argmax
l

log P (l|X, Θ), (5.2)

where Θ def= {λs, P , ρs|∀s} is a parameter of acoustic models. Since the objective of this
study is to enhance the emission pdfs by kernel methods, the estimation of ρ and P is not
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discussed here. Therefore, Λ def= {λs|∀s} is used instead of θ for the sake of readability in
the remainder of this chapter.

First, a parametric discriminant function is introduced in order to indicate the performance
of the model parameter Λ. By considering l 6= li as a possible sequence of labels that is
different from the correct label sequence li, the following pair-wise discriminant function
D(Xi, l; Λ) is used:

D(Xi, l; Λ) def= log
P (Xi, li|Λ)
P (Xi, l|Λ)

def= log
P (Xi|li, Λ)P (li)
P (Xi|l, Λ)P (l)

. (5.3)

Here, it is assumed that the label sequences (l, li) are independent of the parameters of emis-
sion pdfs Λ.

In this discriminant function, when Xi is misclassified into an incorrect word sequence
l 6= li, it is found that D(Xi, l; Λ) is less than 0 (i.e., the denominator is greater than the
numerator in Eq. (5.3)). Therefore, in order to eliminate misclassifications, Λ should be es-
timated such that D(Xi, l; Λ) > 0 for all possible l 6= li. It should be noted that it is also
possible to provide an alternative definition of the discriminant function D (e.g., maximum
mutual information estimation (MMIE) criterion [Bahl et al., 1986] and minimum phone er-
ror (MPE) criterion [Povey and Woodland, 2002]). In this chapter, a discriminant function
that is similar to the one used in the minimum classification error (MCE) training of HMMs
[McDermott and Katagiri, 1997] is used because the MCE-type discriminant function yields
large-margin criterion when combined with the model training method described in Section
5.4. It should be noted that the discriminant function used in this chapter is defined as a pair-
wise discriminant function as contrasted to the Eq. (4.6). i.e., the discriminant function takes
an additional parameter l that is treated as an error label sequence, and evaluate the difference
in the log-likelihoods between the correct label sequence and the given error label sequence.

5.3.2 Hidden Markov models with log-linear emission pdfs

As in the case of conventional HMMs, it is assumed that the nth vector in an observed se-
quence xn depends on the nth HMM state qn in a state sequence q = {q1, q2, · · · , qn, · · · },
and q depends on a given word sequence l. Then, Eq. (5.3) is expressed as follows:

D(Xi, l; Λ) = log

∑
q∈S(li)

∏
n P (xi

n|λqn)P (q|li, Xi)∑
q∈S(l)

∏
n P (xi

n|λqn)P (q|l, Xi)
+ log

P (li)
P (l)

. (5.4)

Most applications of HMMs approximate the sum of probabilities over every possible state
sequence by a probability calculated from a single Viterbi (maximum likelihood) path. There-
fore, the following Viterbi discriminant function D̃(Xi, l; Λ) is used instead of Eq. (5.4):

D̃(Xi, l; Λ) def=
∑

n

log
P (xi

n|λq̂n(Xi,li))
P (xi

n|λq̂n(Xi,l))
+ log

P (q̂(Xi, li))P (li)
P (q̂(Xi, l))P (l)

, (5.5)
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where q̂(Xi, li) denotes a Viterbi path for the correct word sequence li and q̂(Xi, l) denotes
a Viterbi path for an incorrect word sequence l. Further, q̂n(Xi, li) and q̂n(Xi, l) are nth

elements in q̂(Xi, li) and q̂(Xi, l) , respectively. q̂(Xi, li) and q̂(Xi, l) are expressed as
follows:

q̂(Xi, li) =argmax
q∈S(li)

P (q|Xi, li,Λ),

q̂(Xi, l) =argmax
q∈S(l)

P (q|Xi, l, Λ).
(5.6)

It should be noted that the Viterbi paths depend on Λ.
As an emission pdf, a log-linear model in an RKHS is considered as a model for a vector

xi
n in a sequence, as follows:

P (xi
n|λs) =

1
Zφ(λs)

exp
{

λT
s φ(xi

n)
}

,

Zφ(λs) =
∫

x

exp
{

λT
s φ(x)

}
dx.

(5.7)

Here, λs is a weight vector in a log-linear model; φ, a feature warping function (as described
in Section 5.2); and Zφ, a partition function obtained by marginalizing out a vector x ∈ RD.
The likelihood evaluation form of the proposed HMMs is very similar to that of HCRFs
[Gunawardana et al., 2005, Reiter et al., 2007]. It should be noted that although kernel ma-
chines based on HCRFs are not realized in [Gunawardana et al., 2005, Reiter et al., 2007],
the proposed extensions can also be applied to HCRFs. This thesis focused on HMM-based
kernel machines.

In general cases, the integral in Zφ is intractable. Here, the calculation of Zφ is omitted
and assumed to be constant, as in [Sha and Saul, 2007]. By substituting Eq. (5.7) into Eq.
(5.5) and by omitting the Zφ, the discriminant function D̃ is obtained as follows:

D̃(Xi, l; Λ) =
∑

t

(
λq̂n(Xi,li) − λq̂n(Xi,l)

)T
φ(xi

n) + log
P (q̂n(Xi, li))P (li)
P (q̂n(Xi, l))P (l)

. (5.8)

Because of the omission of the normalization term Zφ in Eq. (5.8), the non-normalized log-
likelihood λT

s φ(x) is used to compute the emission probability at the state s in our methods.
Therefore, hereinafter, this quantity (non-normalized log-likelihood) is termed as “score.”
While conventional methods use GMMs to model P (Xi

n|s,Λ), the proposed method uses
the simple pseudo-probabilistic distribution exp(λT

s φ(x)) to apply kernel methods.
Although the Viterbi approximated discriminant function is used in order to simplicity and

computational efficiency, the approximation strategy used in Chapter 4 is also suitable for the
method described in this chapter.
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5.4 MRED Training
In this section, an estimation method for parameters of emission pdfs λs used in the discrim-
inant function (Eq. (5.8)) is described.

Although several frameworks have been identified for estimating the parameters, a training
method used in this thesis is derived from the minimum relative entropy discrimination
(MRED) framework. As a result of using the MRED framework, several extensions
for MRED can be used in future works. For example, multistream speech recognition
[Janin et al., 1999] can also be integrated into this framework by employing dynamic kernel
combination methods for MRED [Lewis, 2008].

The remainder of this section is organized as follows. First, in Section 5.4.1, the formu-
lation of MRED, a general solution of posterior pdf, and a general form of the objective
function are presented and described in terms of this chapter. Then, in Section 5.4.2, an ana-
lytical posterior pdf and an analytical objective function are derived by introducing conjugate
prior pdfs. Finally, in Section 5.4.3, a method for avoiding the explicit representation of the
feature warping function φ(x) by plugging in a kernel function K(x, y) into the objective
function and the emission pdfs is described.

5.4.1 MRED framework

In MRED, the training of classifiers is formulated as a convex optimization problem, where
MRED treats all variables in convex optimization (both the parameters Λ and the slack vari-
ables ξ) as random variables. By representing these random variables as distributions, regu-
larization can be performed by minimizing the Kullback-Leibler divergence (KL divergence)
of the prior distribution P 0(Λ, ξ) from the posterior distribution P (Λ, ξ) under the discrimi-
native constraints. The author emphasizes that MRED can estimate a model parameter even
if the model is not a probabilistic model. Therefore, the omission of the normalization term
Zφ in the discriminant function D̃ (Eq. (5.8)) is not crucial in the MRED training process.

The primary problem of this optimization is expressed as follows:

minimize
P (Λ,ξ)

KL[P (Λ, ξ)||P 0(Λ, ξ)],

subject to
〈
D̃(Xi, l; Λ)− ξi

l

〉
P (Λ,ξ)

≥ 0, ∀i,∀l 6= li.
(5.9)

Here, 〈f(x)〉g(x) is the expectation of f(x) over the distribution g(x), that is, 〈f(x)〉g(x)
def=∫

x
g(x)f(x)dx. KL[f(x)||g(x)] is the KL divergence of g(x) from f(x). ξ = {ξi

l |∀i,∀l 6=
li} is a set of slack variables. Each slack variable corresponds to each constraint (i.e., each i

and l 6= li) in the optimization. By decreasing the slack variable ξi
l , the area of the feasible
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region of the constraint can be increased. However, in general, decrease in slack variables is
penalized by introducing a prior pdf P 0(ξi

l) that favors larger slack variables.
By considering the Lagrange functional of the above optimization problem and from the

Karush-Kuhn-Tucker conditions (KKT conditions), the following posterior distribution is ob-
tained by using the variational method:

P (Λ, ξ) ∝ P 0(Λ, ξ) exp

∑
i,l 6=li

αi
l

(
D̃(Xi, l; Λ)− ξi

l

) , αi
l ≥ 0. (5.10)

Here, α def= {αi
l ≥ 0|∀i,∀l 6= li} is a set of Lagrange multipliers of this optimization problem

(Eq. (5.9)). Similar to slack variables, the Lagrange multipliers are also introduced for each
constraint in the optimization.

Then, the primary problem (Eq. (5.9)) with the P (Λ, ξ) optimization is replaced with the
following dual problem with α optimization as follows:

maximize
α

J(α),

subject to αi
l ≥ 0, ∀i,∀l 6= li

where

J(α) = − log Z(α),

Z(α) =

〈
exp

∑
i,l

αi
l

(
D̃(Xi, l; Λ)− ξi

l

)〉
P 0(Λ,ξ)

.

(5.11)

The detailed derivations of the dual problem are described in Appendix A.

5.4.2 Definitions of prior pdfs and derivations of the closed-form objec-

tive function

In this section, the closed-form expression of the posterior pdf P (Λ) and the objective func-
tion J(α) is obtained by introducing conjugate prior pdfs into Eqs. (5.10) and (5.11), respec-
tively. Here, it is assumed that the prior pdf P 0(Λ, ξ) can be decomposed into the product of
the prior pdf of the parameter of each HMM state P 0(λs) and that of the slack variable of
each constraint P 0(ξi

l) as follows:

P 0(Λ, ξ) def=
∏
s

P 0(λs)
∏

i,l 6=li

P 0(ξi
l). (5.12)

As in the case of large-margin methods including soft-margin SVMs, regularization is
performed by minimizing the L2-norm of weight vectors ||λs||2 and the L1-norm of slack
variables ||ξi

l ||1. Since KL-divergence is defined as the expectation of the difference between
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log-likelihoods of two distributions. the functional forms of regularization terms used in this
method are identical to the logarithm of prior pdfs. Therefore, these regularization criteria are
realized by employing Gaussian distributions as the priors of the parameter λs and exponen-
tial distributions as the priors of slack variables ξi

l . The prior pdfs are expressed as follows:

P 0(λs)
def=N (λs|0, I),

P 0(ξi
l)

def=

{
1
c0 exp

{
−c0|δ(li, l)− ξi

l |
}

ξi
l < δ(li, l),

0 otherwise,

(5.13)

where δ(li, l) is the label similarity between l and li. The determinant of the covariance ma-
trix of P 0(λs) and the hyper-parameter c0 correspond to the weight variable in soft-margin
SVM, which control the trade-off between empirical error minimization and margin maxi-
mization. The prior distribution is simplified by setting the covariance matrix in P 0(λs) as
I , without any loss of generality. c0 is scaled appropriately. These prior settings lead to ana-
lytical and explicit solutions of the posterior pdfs (P (λs) and P (ξi

l)), because the prior pdfs
given in Eq. (5.13) can be assumed to be conjugate prior pdfs.

In discriminative training methods, it is important to determine which measurement of er-
ror should be minimized. For example, MCE [McDermott and Katagiri, 1997] attempts to
minimize the sequence-level error that is “0” when all elements in a hypothesis sequence l

are correct, and “1” otherwise. Because this measurement is coarse and is difficult to min-
imize, recent approaches measure the impact of an error hypothesis by introducing a fine
error measurement. For example, MPE [Povey and Woodland, 2002] uses the approximated
phoneme-level edit distance of label sequences, and LM-HMM [Sha and Saul, 2007] uses
Hamming distance (frame-level error measurement) between the Viterbi sequence of the cor-
rect label sequence and that of a hypothesis sequence l. In the proposed method, several error
measurements can be incorporated by designing label similarity function δ(li, l) in the prior
pdf of slack variables ξi

l (Eq. (5.13)). Because the optimization attempts to ensure that the
value of the discriminant function D̃(.) is higher than that of ξi

l (Eq. (5.9)), setting of δ(li, l),
which is equivalent to the mode value of the prior pdf P 0(ξi

l), is equivalent to designing the
error measurement that need to be minimized. The definition of the label similarity function
is provided in the experimental sections.

The following posterior distribution of parameters P (Λ|α) is obtained by substituting the
prior distributions P 0(Λ, ξ) (Eqs. (5.12) and (5.13)) into the posterior pdf (Eq. (5.10)), as
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follows:

P (Λ|α) =
∏

t

P (λs|α),

P (λs|α) ∝N (λs|0, I)︸ ︷︷ ︸
Prior pdf

exp

∑
i,l 6=li

αi
l

(
D̃(Xi; l, Λ)− ξi

l

) ,

∝ exp
{
−1

2
||λs||2

}
exp

∑
i,l6=li

αi
l

∑
n

Ψs(n; i, l)φ(xi
n)Tλs


︸ ︷︷ ︸

(λ̂s(α))Tλ̂s(α)

,

∝N (λs|λ̂s(α), I)︸ ︷︷ ︸
Posterior pdf

,

(5.14)

where

λ̂s(α) =
∑

i,l 6=li

αi
l

∑
n

Ψs(n; i, l)φ(xi
n),

Ψs(n; i, l) =1(q̂n(Xi, li), s)− 1(q̂n(Xi, l), s).
(5.15)

Here, 1(x, y) is an indicator function that returns 1 when x = y and 0 otherwise, Ψs(n; i, l)
denotes the difference between the occupation probability of the nth frame in the ith fea-
ture sequence of the correct Viterbi path q̂n(Xi, li) and that of the incorrect Viterbi path
q̂n(Xi, l).

Then, the objective function J(α) in Eq. (5.11) is focused. By solving the integral in
the objective function with given priors (Eq. (5.13)), a closed-form expression for J(α) is
analytically obtained as a sum of parameter terms Jλs , slack variable terms Jξi

l
, and hidden

variable terms Jqi
l
, as follows:

J(α) =
∑

s

JEMIS
s (α) +

∑
i,l 6=li

(
JSLACK

i,l (α) + JSHIFT
i,l (α)

)
. (5.16)

Here, the emission parameter term can be written as follows:

JEMIS
s (α) =− ||λ̂s(α)||2. (5.17)

The term JEMIS
s involves the L2-regularization criterion of the parameter vector λs.

The other terms represent the loss function used in MRED that causes an increase in the
Lagrange multipliers αi

l such that the discriminative constraints are satisfied, as follows:

JSLACK
i,l (α) =δ(l, li)αi

l + log(c0 − αi
l),

JSHIFT
i,l (α) =− αi

l

(
log

P (q̂i)P (li)
P (q̂i

l)P (l)

)
.

(5.18)
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Thus, the α optimization can be solved by maximizing Eqs. (5.17) and (5.18). Further, the
optimal posterior pdf can be obtained as P (Λ|α̂), where α̂ = argmaxαJ(α).

5.4.3 Kernel-based representations of the objective function and the

posterior pdfs

As a result of deriving the dual problem, the parameter term of the objective function (Jλs(α)
in Eq. (5.17)) can be rewritten as the weighted sum of the inner product between φ(x)’s. As
discussed in Section 5.2, since the objective function can be expressed by using the inner
product of warped features φ(x)Tφ(y), it is not necessary to explicitly represent the warped
features φ(x). The parameter term of the objective function can be rewritten by using the
kernel function K(x, y) def= φ(x)Tφ(y) as follows:

JEMIS
s (α) =−

∑
i′,l′ 6=li′

∑
i,l 6=li

∑
n,n′

αi
lα

i′

l′Ψs(n; i, l)Ψs(n′; i′, l′)K(xi
n,xi′

n′). (5.19)

When this representation of the parameter term JEMIS
s (α) is used, it is found that the explicit

representation of φ is removed from all the terms in the objective function (Eqs. (5.17) and
(5.18)), and the kernel-based representation can be used to compute the objective function.
The practical solver for α optimization is described in Appendix C.

In the evaluation phase (including Viterbi path computation), the score of an unknown
input vector x can be evaluated by marginalizing out parameter λs from the posterior pdf
P (λs|α̂) as follows:

〈log P (x|λs)〉P (λs|α) =
〈
φ(x)Tλs

〉
N (λs|λ̂s(α̂))

= φ(x)Tλ̂s(α̂). (5.20)

As in the case of the objective function, the kernel-based representation of the score can be
obtained by substituting Eq. (5.20) into Eq. (5.15) as follows:

〈log P (x|λs)〉P (λs|α) =φ(x)T
∑

i,l 6=li

αi
l

∑
t

Ψs(n; i, l)φ(xi
n),

=
∑

i,l 6=li

αi
l

∑
t

Ψs(n; i, l)K(xi
n, x).

(5.21)

Similar to the objective function, the explicit representation of φ is not necessary in the score
evaluation procedure.

Thus, the kernel machines are obtained by handling RKHS via kernel function K. The
author termed the models specified by (α̂, Ψ, K) as “hidden Markov kernel machines
(HMKMs).” As described in the previous section, although HMKM is a kernel machine,
the model formulation of HMKM can be treated as that of standard HMMs. Therefore,
the scheme of proposed method is similar to that of conventional HMMs trained by
discriminative training methods.
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5.5 Phoneme classification experiments
In order to evaluate the performance of the proposed method as a sequential classifier, isolated
phoneme classification experiments are performed to compare the proposed method with
the conventional HMMs that use GMMs as emission pdfs (continuous density HMMs; CD-
HMMs).

The objective of the experiments in this section is to evaluate the exact performance of
the proposed method, and therefore, approximation techniques of kernel machines are not
applied. Since the training session of kernel machines requires enormous computational
resources, it is unrealistic to evaluate the exact performance of the proposed method using
a large-scale dataset, as discussed in Section 5.1. Therefore, the amount of training datasets
used in the experiments is restricted.

5.5.1 Experimental setup

Our method is compared with conventional GMM-based CD-HMMs using two training meth-
ods, i.e., maximum likelihood estimation (MLE) and maximum mutual information estima-
tion (MMIE) [Woodland, 2002]. The extended Baum-Welch (EBW) algorithm is used to
implement the optimization of MMIE. Although the MLE is the most widely used estima-
tion method for CD-HMMs, MLE procedures are not designed for minimizing classification
error. Therefore, our method is also compared with the most widely accepted discriminative
training method MMIE *1.

In these experiments, training datasets of 3 sizes (small, medium and large) and 1 test
dataset are prepared for isolated phoneme classification experiments by segmenting the
TIMIT dataset according to the label information. There is no overlap between the speakers
of the test dataset and those of the training dataset. Table 5.1 summarizes the details of the
datasets. All acoustical models in these experiments were constructed as gender-independent
models. All feature vectors in the training and test data were whitened by using statistics
(covariance matrix and average vector) obtained from the training dataset; the whitening
operation is commonly used for the training of discriminative models. In the experiments,
both the conventional CD-HMMs and the proposed method have left-to-right 3 states for
each 39 phoneme categories defined in [Lee and Hon, 1989]. Configurations for acoustical
analysis are summarized in Table 5.2.

*1 It is reported that the performance of MMIE is similar to that of other discriminative training methods, such
as MCE [Schlüter et al., 2001].
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Table. 5.1 Dataset description

# categories 39 (defined in [Lee and Hon, 1989])
Training set Small Medium Large
# segments 3,089 9,275 26,208
# frames 25,390 77,463 219,675
Test set

# segments 4,243
# frames 36,790

Table. 5.2 Acoustical analysis configuration; ∇ denotes time-domain derivative of feature sequence

Sampling rate 16 kHz
Quantization 16 bits

Feature vector MFCC (12 dims.), Energy,∇MFCC, ∇ Energy,
∇∇MFCC, ∇∇ Energy. (Total: 39 dims.)

Window len./ shift 25 ms / 10 ms

The following Gaussian kernel was used in the experiments:

K(x,y) = exp{−γ||x− y||2}, (5.22)

where γ denotes a hyper-parameter. The Gaussian kernel is widely used in kernel machines
because the number of dimensions of φ(x), which satisfies K(x, y) = φ(x)Tφ(y), is infi-
nite when Gaussian kernels are used as K [Schölkopf and Smola, 2002].

Hamming distance between the Viterbi sequences computed from the given word se-
quences is defined and used as a label similarity δ(li, l) in Eq. (5.13), as follows:

δ(li, l) =
N(Xi)∑

n=1

(
1− 1

(
q̂n(Xi, li), q̂n(Xi, l)

))
. (5.23)

The Hamming-distance-based measurement of label similarity is widely used in the discrimi-
native training methods (e.g., LM-HMMs [Sha and Saul, 2007] use this measurement); there-
fore, this label similarity function is used in these experiments. The Hamming distance be-
tween 2 phonemes is identical to the number of frames in the sequence (δ(li, l) = N(Xi))
because the experiments in this section are isolated phoneme classification experiments (i.e.,
q̂n(Xi, li) and q̂n(Xi, l) are always different for all possible l 6= li and n). The hyper-
parameter c was set to 5 empirically, and the hyper-parameter γ was varied to examine the
behavior of the proposed method.
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5.5.2 Discussions on classification performance

Figures 5.2, 5.3, and 5.4 show the comparisons between the phoneme classification error rate
of the proposed model and the conventional CD-HMMs trained by small, medium, and large
datasets, respectively. The numbers of mixture components in the conventional CD-HMMs
are varied, as shown in these figures.

From the experimental results, it is confirmed that our kernel-based models steadily re-
duce the classification errors. In comparison with CD-HMMs trained by the standard MLE
procedure, the proposed kernel machines (HMKMs) reduced the errors by 5.6%, 6.1%, and
10.3% relatively over small, medium, and large datasets, respectively, under the best condi-

# of mixture components

Figure 5.2 Left: Classification error rates of CD-HMMs trained by maximum likelihood
estimation (MLE) and maximum mutual information estimation (MMIE). Right: Classifi-
cation error rates of hidden Markov kernel machines and CD-HMMs. (small dataset)

# of mixture components

Figure 5.3 Left: Classification error rates of CD-HMMs trained by maximum likelihood
estimation (MLE) and maximum mutual information estimation (MMIE). Right: Classifi-
cation error rates of hidden Markov kernel machines and CD-HMMs. (medium dataset)
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tion of each method. In comparison with CD-HMMs with a discriminative training proce-
dure (MMIE), HMKMs reduced the errors by 4.2%, 5.4%, and 5.2% relatively over small,
medium, and large datasets, respectively, under the best condition of each method. Therefore,
it was concluded that the proposed method achieved improvements in terms of reducing the
errors in comparison with conventional CD-HMMs, with the best setting of the number of
mixture components for all training datasets.

From Fig. 5.2 (small dataset), it is confirmed that the performances of CD-HMMs are
saturated by increasing the number of mixture components. In particular, it is found that the
performance of the discriminative training method (MMIE) degraded for the models with
a large number of mixture components. It is considered that these results are attributed to
overfitting problems. However, the proposed method achieved lower error rates even under
such conditions. It is considered that this advantage results from the L2-regularization intro-
duced to λs. As in the case of SVMs, the L2-regularization introduced by Gaussian prior
(Eq. (5.13)) yields large-margin classifiers that have advantages in generalization ability.

As shown in Fig. 5.4 (large dataset), although the overfitting problems might be avoided
due to sufficient amounts of data, the relative advantages of the proposed method are con-
firmed. It is considered that this relative advantage probably results from the prevention of
problems arising from local optima. Because our method can prevent the risk of local op-
tima by avoiding mixture models, the problems arising from local optima might be avoided
as compared to those occurring in conventional CD-HMMs with a large number of mixture
components.

Further, it is observed that setting of the hyper-parameter γ was not so sensitive to clas-
sification performance in the proposed method as compared to the setting of the number of
mixture components in the GMM methods. For example, in the case of conventional CD-

# of mixture components

Figure 5.4 Left: Classification error rates of CD-HMMs trained by maximum likelihood
estimation (MLE) and maximum mutual information estimation (MMIE). Right: Classifi-
cation error rates of hidden Markov kernel machines and CD-HMMs. (large dataset)
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HMMs, it is observed that the number of mixture components that achieved the best perfor-
mance in the evaluation of the small dataset yielded poor performance in the evaluation of the
large dataset. On the other hand, the hyper-parameter γ that achieved the best performance
in the evaluation of the small dataset (γ = 0.04) also caused performance improvements as
compared with CD-HMMs in the evaluation of the large dataset. In the experiments, im-
provements were confirmed in the range 0.4 ≤ γ ≤ 0.8, even when the amount of training
datasets was varied. This property is important for a practical situation since the tuning of γ

is not necessary for new datasets, unlike the number of mixture components used in conven-
tional CD-HMMs.

Therefore, it is confirmed that the problems associated with CD-HMMs with GMM-type
emission pdfs, i.e., overfitting and local optima, are avoided in HMKMs. Further, it is con-
firmed that HMKMs with Gaussian kernel offer an advantage in terms of tuning parameters.

5.5.3 Discussions on sparseness

Here, the number of non-zero Lagrange multipliers obtained in the above experimental re-
sults are examined. Conventionally, this number is used to evaluate the generalization ability
of SVMs. As shown in Eq. (5.14), the sequence Xi, corresponding to αi

l = 0, does not
disturb the estimated posterior pdf P (Λ|α) even if it is removed from the training set. In
addition, because the zero Lagrange multiplier (αi

l = 0) indicates that the inequality con-
straint attributed to ith training sequence and an incorrect label l is satisfied, the sequence
is certainly not misclassified into the incorrect label l by using the estimated posterior pdf
P (Λ) when αi

l = 0. These two properties of Lagrange multipliers indicate that Xi with
αi

l = 0 is not misclassified into the incorrect label l by using a posterior pdf estimated from
the remaining training data. Therefore, a decrease in the number of non-zero αi

l leads to a
better performance in leave-one-out cross-validation (LOO-CV), which is commonly used to
estimate the generalization performance of SVMs.

In the isolated phoneme classification experiments described in this section, the number
of the Lagrange multipliers M corresponds to the product of the number of sequences in the
training dataset N and the number of error hypothesis, i.e., M def= |{(i, l)|i ∈ [1, N ], l 6= li}|.
Table 5.3 lists the number of non-zero multipliers M+

def= |{(i, l)|αi
l 6= 0, i ∈ [1, N ], l 6= li}|

and the ratio of M+ to M . From the table, it is confirmed that the proposed method also leads
to sparse solutions. The ratios of non-zero multipliers in the experiments were less than or
around 10%, as shown in Table 5.3 (8.4%, 10.1%, and 3.8%, respectively), and therefore, the
proposed method should achieve good generalization ability.

Further, a sparse solution is also important for reducing the computational complexity. As
mentioned in Section 5.2, loop computation over the training data is essential in kernel-based
methods. However, if αi

l is 0, the computation due to vectors xi
n, which are related to αi

l, can
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Table. 5.3 The number of non-zero Lagrange multipliers M+ in estimated models that
achieved the best performance on each dataset, and the ratio of M+ to the number of
Lagrange multipliers M

Dataset Small Medium Large
The best setting of γ 0.04 0.08 0.08

M+ 9843 35771 37518
M+/M 8.4% 10.1% 3.8%

be omitted. Thus, the computational cost required for evaluating HMKMs can be reduced
to M+/M . Although training and evaluation still require a considerably high computational
cost, the proposed method is effective in comparison with kernel-based methods, which yield
dense solutions.

5.6 Conclusion
In this chapter, a method for sequential pattern classification derived from kernel methods
was proposed; this method is called the hidden Markov kernel machine (HMKM). In the pro-
posed method, vectors in the input sequences are warped to a high-dimensional feature space
(reproducing kernel Hilbert space; RKHS) defined by a kernel function and then modeled by
hidden Markov models (HMMs) with log-linear emission probability distribution functions
(pdfs). Nonlinear classification is achieved without using mixture models by using emission
pdfs in RKHS.

The efficiency of the proposed method is confirmed by isolated phoneme classification
experiments. The experimental results show that the proposed method outperforms conven-
tional hidden Markov models that use Gaussian mixture models as emission pdfs.

In future, the author intends to reduce the computational costs of training and evaluation
by using approximation techniques, aiming for acceleration of kernel-based methods devel-
oped in the machine learning community [Kashima et al., 2009, Freitas et al., 2006]. Then,
the author also intends to apply our method to large-scale problems, e.g., large vocabulary
continuous speech recognition.
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Chapter 6

Conclusions

This thesis proposed three methods based on the regularized discrimination of high-
dimensional signal representations in order to improve the performance of automatic speech
recognizers. This thesis has attempted to indicate the essential significance of the approach
by evaluating the proposed three methods.

6.1 Summary of the thesis
In Chapter 1 and Chapter 2, the current situation of state-of-the-art automatic speech recog-
nition research is discussed. First, the current scheme of automatic speech recognition (ASR)
and the approach used in this thesis to improve the performance of ASR are presented and
described. Then, the conventional methods used for feature extraction, acoustic model esti-
mation, and feature augmentation are described.

In Chapter 3, a method for feature extraction from frequency modulation (FM) of speech
signals is presented. The aim of this method is to construct a high-dimensional speech repre-
sentation that will have complementarity with conventional feature extraction methods. The
proposed method is evaluated by carrying out noisy speech recognition experiments and re-
verberant speech recognition experiments. Further, the properties of FM-based features are
discussed.

In Chapter 4, a method for utilizing regularized discrimination based on continuous-density
hidden Markov models (CD-HMMs) is proposed and discussed. This method enables reg-
ularized discrimination of sequential data associated with sequential labels. The proposed
method is evaluated by carrying out continuous phoneme recognition experiments.

In Chapter 5, a kernel-based nonlinear feature transform method is proposed in order to
augment the dimensionality of features. This method realizes regularized discrimination
in higher-dimensional space. Typically, kernel methods cannot be applied to conventional
HMMs because of the modifications required in training methods. However, the proposed
method enables application of kernel methods by employing the training method proposed in
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Chapter 4. The proposed method is evaluated by conducting isolated phoneme classification
experiments.

6.2 Future works
In this section, future works related to the framework proposed in this thesis are discussed.

This thesis addressed the elemental technologies for the construction of automatic speech
recognizers on the basis of regularized discrimination of high-dimensional signal represen-
tation. However, the performances of the combination technologies were not investigated
sufficiently because a number of possible combinations could be identified. In order to con-
struct high-performance speech recognizers, comparative studies are necessary.

Further, in order to apply these methods to large-scale problems, efficient implementations
of the corresponding algorithms are necessary, especially in the method proposed in Chapter
5. Although this thesis mentioned some implementation problems, further improvements in
computational efficiency may be possible and required.

The author is hopeful that the methods proposed in Chapter 4 and Chapter 5 can be ap-
plied into other application areas. For example, gesture recognition, which is conventionally
performed by using CD-HMMs, can be enhanced by using the methods presented in this
thesis.

6.3 Final remarks
There has been a drastic improvement in ASR technologies as a result of the application of the
latest developments from the signal processing research community and the machine learning
research community. The main objective of the author is to propose a tolerant classifier that
can be used to incorporate the many successful findings arising from developments in these
research communities. Specifically, the regularized classifier for high-dimensional features
has been introduced to incorporate arbitrary features derived from recent developments in the
signal processing research community and to apply efficient optimization techniques derived
from recent developments in the machine learning research community.

Although this thesis only mentions the framework and important theories regarding regu-
larized discrimination of high-dimensional features, more instances of this combination tech-
nology can be identified. The author considers that interdisciplinary studies of the front-end
processing theories and the statistical modeling theories would be advantageous for realizing
accurate speech recognition.

The studies presented in this thesis are mainly based on analyses of the engineering aspects
of current speech recognition systems with little regard for certain topics in speech-science
research, such as phonetics and linguistics. However, the author is hopeful that the contri-
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butions in this thesis will inspire the whole of the speech research community. It would be
gratifying to the author if this thesis is able to contribute to developments of both the science
and engineering aspects of speech research.
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Appendix A

Derivations of MRED dual
problems

To derive the dual problem, the Lagrange functional of the primary problem (Eq. (5.9)) is
introduced as follows:

L(α, ν)[f(Θ, ξ)] =
〈
log f(Θ, ξ)− log P 0(Θ, ξ)

〉
f(Θ,ξ)

−
∑

i

αi
〈
D(Xi; Θ)− ξi

〉
f(Θ,ξ)

− ν

(∫
Θ

∫
ξ

f(Θ, ξ)dξdΘ− 1
)

.

(A.1)

Here, α and ν are Lagrange multipliers; f(Θ, ξ), an argument function that represents a
posterior pdf. αi must remain non-negative.

From the KKT conditions, it is found that the solution of the primary problem P (Θ, ξ) is
located on the saddle point of the Lagrange functional. By applying the variational method
to the Lagrange functional, the following relational expression is obtained:

δ

δf(Θ, ξ)
L(α, ν)[f(Θ, ξ)]

=1 + log f(Θ, ξ)− log P 0(Θ, ξ)−
∑

i

αi
(
D(Xi; Θ)− ξi

)
− ν = 0.

(A.2)

Using this equation, the optimal posterior pdf P (Θ, ξ) is obtained as follows:

P (Θ, ξ) = exp{ν − 1}P 0(Θ, ξ) exp

{∑
i

αi
(
D(Xi; Θ)− ξi

)}
. (A.3)

Since P (Θ, ξ) is a pdf and it must be normalized (i.e.,
∫
Θ,ξ

P (Θ, ξ)d(Θ, ξ) = 1), the
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multiplier ν depends on α, and it can be rewritten as follows:

exp {ν − 1} =

〈
exp

{∑
i

αi
(
D(Xi; Θ)− ξi

)}〉
P 0(Θ,ξ)

,

def=
1

Z(α)
.

(A.4)

Because of the convexity of the problem, the saddle point is located at the minimum point
obtained by varying f(Θ, ξ) and the maximum point obtained by varying α. The dual prob-
lem is defined by substituting f(Θ, ξ) in the Lagrange functional L (Eq. (A.1)) by P (Θ, ξ)
(Eq. (A.3)) and by considering the maximization problem with respect to α, as follows:

L(α, ν)[P (Θ, ξ)] =− log Z(α)︸ ︷︷ ︸
J(α)

+constant.
(A.5)

Thus, the dual objective function is obtained as used in Eqs. (4.4) and (5.11).
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Appendix B

Solver for Lattice MRED
optimization

In order to efficiently perform the MRED optimization, an rprop algorithm is used in
the α-optimization [Igel and Hüsken, 2000]. The rprop is suitable for the α-optimization
since it exhibits data-parallelism similar to the forward-backward algorithm used in the
Q̂-optimization. Algorithm 2 shows the detailed pseudo-code of the solver based on rprop.

As described in Section 4.4, the optimization is performed by incrementally adding con-
straints and corresponding Lagrange multipliers. In Algorithm 2, the variable O indicates the
current number of constraints corresponding to each training example.

From Line 4 to Line 7, the forward-backward algorithm is performed for each training
example i. Since data-parallelism is ensured in this part, the parallel computation of the
forward-backward algorithm is performed by splitting the training dataset.

From Line 8 to Line 12, an initilization of the rprop parameters is performed. Since the
α-optimization is a convex optimization, the constants in this part do not effect the result of
the optimization. However, these constants are important for computational efficiency. In
this thesis, αINIT is set at 0, and ∇INIT is set at c0/4.

From Line 13 to Line 31, the rprop algorithm is performed. Althoguh the rprop algorithm
is a gradient-based optimization algorithm, absolute values of derivatives are not used. In the
rprop, sign of the derivatives si

o are used to determine sign of the updates, and the positive
variable ∇i

o is used to determine the intensity of the update. The ∇i
o is controled to have a

resilience. That is, the step-size is amplified when sign of derivatives si
o is the same with that

in the previous step s̃i
o, and the step-size is attenuated when sign of derivatives si

o is different
with that in the previous step s̃i

o. The amplification factor ν+ and the attenuation factor ν− is
typically set at 1.2 and 0.5, respectively.

In the rprop algorithm, the computations of the partial derivatives δ
δαi

o
J(α, Q̂), the updates

of the αi
o and∇i

o, and the accumulation of delta statistics ∆ can be performed by using paral-
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Table. B.1 Normalized computational speed as a function of the numbers of computation
threads used

# Threads 1 2 4 8 16 32
Forward-Backward 1.0 1.74 3.36 5.81 10.17 13.31

Rprop 1.0 1.70 3.30 5.78 8.51 9.04

lel computation environments. Table B.1 shows the speed-up ratio obtained by increasing the
number of computation threads used. From this table, it is confirmed that the rprop can also
be efficiently performed by using parallel computation environments. However, degradations
are confirmed when a number of threads are used. It is considered that this deficit is due to
the bus speed bottleneck.
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Algorithm 2 MRED optimization algorithm

1: Θ̂(0) def= Θ̂MLE

2: O ← 1
3: loop
4: for all i do
5: Compute the sufficient statistics χ(Xi, Ai; Θ(O−1))← FwdBkwd(Ai, Θ(O−1))
6: Compute the sufficient statistics χ(Xi, Ãi; Θ(O−1))← FwdBkwd(Ãi, Θ(O−1))
7: end for
8: for all i, o ≤ O do
9: αi

o ← αINIT

10: ∇i
o ← ∇INIT

11: s̃i
o ← 0

12: end for
13: loop
14: Initialize delta statistics ∆
15: for all i, o ≤ O do
16: si

o ← sign
{

δ
δαi

o
J(α, Q̂)

}
17: if si

o = 0 or s̃i
o = 0 then

18: /* do nothing */
19: else if si

o = s̃i
o then

20: ∇i
o ← max

{
∇MIN, min

{
∇MAX, ν+ · ∇i

o

}}
21: else
22: ∇i

o ← max
{
∇MIN, min

{
∇MAX, ν− · ∇i

o

}}
23: end if
24: αi

o ← max
{
0.0, min

{
αi

o + si
o · ∇i

o, c
0
}}

25: s̃i
o ← si

o

26: ∆← ∆ + αi
o(χ(Xi, Ãi; Θ(o))− χ(Xi, Ãi; Θ(o)))

27: end for
28: end loop
29: Determine Θ(O) by using the prior pdf parameters and the delta statistics ∆.
30: end loop
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Appendix C

Solver for HMKM optimization

It is inefficient to carry out optimization by a naive implementation for convex programming
solvers because the number of possible l is large. In order to handle a large number of
possible l, a method used in structured SVMs [Tsochantaridis et al., 2005] is used. Because
the Viterbi alignment computations are required in the proposed method, some modifications
to the structured SVM are required. The modified algorithm is described in Algorithm 3.

In Algorithm 3, the set Ci stores the working sets of label sequences (called “cutting planes”
in [Tsochantaridis et al., 2005]) associated with the ith training data. The label sequence l̂

with the smallest expected margin M(l̂; Λ) is selected and incrementally added to the set
Ci if the expected margin M(l̂; Λ) (defined in Line 2) is smaller than the smallest expected
margin among the label sequences in the current working set Ci.

The expected margin M(l; Λ) for a given label sequence l is defined as the difference
between the current discriminant function D̃(Xi, l; Λ) and the label similarity function
δ(l, li) = argmaxξiP 0(ξi), as follows:

M(l; Λ) def= D̃(Xi, l; Λ)− argmax
ξi

P 0(ξi)

=D̃(Xi, l; Λ)− δ(l, li).
(C.1)

Similar to the axis-parallel optimization described in [Jebara, 2001], the proposed algo-
rithm only considers updating a single Lagrange multiplier αi at each iteration (Line 18),
where i and l are randomly selected in Lines 6 and 17, respectively. Because the maximiza-
tion of the objective function in the direction of a single multiplier can be solved analytically,
the optimization is typically very fast in comparison to gradient-based methods. Specifically,
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Algorithm 3 Modified cutting plane algorithm

1: Λ̂(α) def= {λ̂1(α), · · · , λ̂s(α), · · · , λ̂s(α)} (Eq. (5.15))
2: M(l; Λ) def= D̃(Xi, l; Λ)− δ(li, l)
3: αi ← 0 for all i and l 6= li

4: Ci ← φ for all i

5: loop
6: i← choose one training example
7: if λ̂s(α) 6= 0 for all s then
8: l̂← argminl 6=liM(l; Λ̂(α))

/* Performed by conventional decoding algorithms. */
9: else

10: l̂← choose one possible incorrect label sequence randomly
11: end if
12: if λ̂s(α) = 0 ∃s, or

(
minl∈Ci M(l; Λ̂(α))

)
> min{0,M(l̂; Λ̂(α))}+ ε then

13: Ci ← Ci ∪ {l̂}
14: end if
15: compute q̂(Xi, li) and q̂(Xi, l) (∀l ∈ Ci) by using Viterbi algorithms with current

parameters Λ̂(α)
16: while αi converges for all l do
17: l← choose random l from Ci
18: optimize αi with given q̂(Xi, li) and q̂(Xi, l)
19: end while
20: end loop

the update rule can be derived as follows:

αi ←
{

min
[
c0 − ε,max

{
0.0,

−m(i,l)±
√

(m(i,l))2−4l(i,l)n(i,l)

2l(i,l)

}]
l(i, l) =2A(i, l)

m(i, l) =−
(
N(Xi) + 2cA(i, l)− 2B(i, l)

)
n(i, l) =cN(Xi)− 1− 2B(i, l)c

A(i, l) =
S∑

s=1

N(Xi)∑
n=1

N(Xi)∑
n′=1

Ψs(n; i, l)Ψs(n′; i, l)K(xi
n, xi′

n′)

B(i, l) =
S∑

s=1

∑
i′ 6=i

∑
l′ 6=l

N(Xi)∑
n=1

N(Xi′ )∑
n′=1

αi′

l′Ψs(n; i, l)Ψs(n′; i′, l′)K(xi
n, xi′

n′).

(C.2)

where c0 is the hyper-parameter. Here, the plus or minus in the equation is chosen so that
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maximize objective function by evaluating both.
Further, because the hidden state sequences, q̂(Xi, li) and q̂(Xi, l) used in the optimiza-

tion (Line 18) may be obtained as interim results of the decoding process carried out in Line
8, optimization is carried out efficiently by using conventional decoding algorithms.

The working set selection algorithm is similar to the conventional N-best approach
[Chen and Soong, 1994, McDermott and Katagiri, 1997]. In the proposed method, the com-
petitor l, which is considered to be important for optimization, is selected and incrementally
added to working set Ci. Thus, it is ensured that the proposed solver converges to the explicit
solution by adding all possible l to the working set. It should be noted that optimization over
all possible l is not necessary in common cases because most competitors are redundant, and
most αi remain 0.
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